Tổng quan sử dụng tư liệu ảnh viễn thám để lập bản đồ rừng ngập mặn

Bài báo tổng hợp các kết quả nghiên cứu về ứng dụng viễn thám để thành lập bản đổ rừng ngập mặn trên thế giới theo hai chủ đề chính: các tư liệu ảnh và các phương pháp xử lý ảnh; chỉ số để xác định rừng ngập mặn. Kết quả cho thấy, các nghiên cứu về thành lập bản đồ rừng ngập mặn thông thường sử dụng ảnh viễn thám có độ phân giải trung bình, một số ít nghiên cứu sử dụng ảnh viễn thám có độ phân giải cao hoặc sử dụng ảnh hàng không. Về phương pháp sử dụng, sự phát triển của kỹ thuật viễn thám dẫn đến sự phong phú của phương pháp phân loại, các nghiên cứu về rừng ngập mặn thường sử dụng phương pháp phân loại có giám sát, kỹ thuật áp dụng thường dùng là các chỉ số thực vật. Bằng cách khai thác các đặc trưng của hệ sinh thái rừng ngập mặn và đặc điểm của tư liệu viễn thám, các công trình đã phát triển các chỉ số khác nhau để phân loại rừng ngập mặn ra khỏi các thảm thực vật khác. Có 8 chỉ số phát hiện rừng ngập mặn hữu hiệu được thống kê, các chỉ số đều có độ chính xác và lợi thế khác nhau so với chỉ số còn lại, việc sử dụng các chỉ số này cần căn cứ vào điều kiện rừng, quy mô cụ thể của từng khu vực, tư liệu ảnh hiện có và mục tiêu của bản đồ

pdf12 trang | Chia sẻ: Thục Anh | Ngày: 20/05/2022 | Lượt xem: 257 | Lượt tải: 0download
Nội dung tài liệu Tổng quan sử dụng tư liệu ảnh viễn thám để lập bản đồ rừng ngập mặn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
e and W. Tekeuchi (2019). A Review of Remote Sensing Approaches for Monitoring Blue Carbon Quản lý Tài nguyên rừng & Môi trường 74 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 – 2021 Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010-2018, Sensors (Basel), 19. 14. Friedl, Mark A., Damien Sulla-Menashe, Bin Tan, Annemarie Schneider, Navin Ramankutty, Adam Sibley and Xiaoman Huang (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 114: 168-182. 15. Gang and Agatsiva (1992). The current status of mangroves along the Kenyan coast: A case study of Mida Creek mangroves based on remote sensing, Hydrobiologia 247: 29-36. 16. Gao, J. (1999). A comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests, International Journal of Remote Sensing, 20: 2823-2833. 17. Gao, Jay (1997). A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data, International Journal of Remote Sensing, 19: 1887-1899. 18. Gathot Winarso, Anang D. Purwanto, Doddy M.Yuwono (2014). New Mangrove Index As Degradation Health Indicator Using Remote Sensing Data: Segara Anakan and Alas Purwo Case Study. 19. Ghosh, Manoj, Lalit Kumar and Chandan Roy (2016). Mapping Long-Term Changes in Mangrove Species Composition and Distribution in the Sundarbans, Forests, 7. 20. Giri, C., J. Long, S. Abbas, R. M. Murali, F. M. Qamer, B. Pengra and D. Thau (2015). Distribution and dynamics of mangrove forests of South Asia, J Environ Manage, 148: 101-111. 21. Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek and N. Duke (2011b). Status and distribution of mangrove forests of the world using earth observation satellite data, Global Ecology and Biogeography, 20: 154-159. 22. Giri, Chandra, P. Defourny and Surendra Shrestha (2010). Land cover characterization and mapping of continental Southeast Asia using multi-resolution satellite sensor data, International Journal of Remote Sensing, 24: 4181-4196. 23. Giri, Chandra, Jordan Long and Larry Tieszen (2011). Mapping and Monitoring Louisiana's Mangroves in the Aftermath of the 2010 Gulf of Mexico Oil Spill, Journal of Coastal Research, 277: 1059-1064. 24. Giri, Chandra, Bruce Pengra, Zhiliang Zhu, Ashbindu Singh and Larry L. Tieszen (2007). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000, Estuarine, Coastal and Shelf Science, 73: 91-100. 25. Giri, Muhlhausen (2008). Mangrove Forest Distributions and Dynamics in Madagascar (1975–2005). 26. Gong, Peng, Jie Wang, Le Yu, Yongchao Zhao, Yuanyuan Zhao, Lu Liang, Zhenguo Niu, Xiaomeng Huang, Haohuan Fu, Shuang Liu, Congcong Li, Xueyan Li, Wei Fu, Caixia Liu, Yue Xu, Xiaoyi Wang, Qu Cheng, Luanyun Hu, Wenbo Yao, Han Zhang, Peng Zhu, Ziying Zhao, Haiying Zhang, Yaomin Zheng, Luyan Ji, Yawen Zhang, Han Chen, An Yan, Jianhong Guo, Liang Yu, Lei Wang, Xiaojun Liu, Tingting Shi, Menghua Zhu, Yanlei Chen, Guangwen Yang, Ping Tang, Bing Xu, Chandra Giri, Nicholas Clinton, Zhiliang Zhu, Jin Chen and Jun Chen (2012). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, International Journal of Remote Sensing, 34: 2607-2654. 27. Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau and Rebecca Moore (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 202: 18-27. 28. Green, E. P., C. D. Clark, P. J. Mumby, A. J. Edwards and A. C. Ellis (2010). Remote sensing techniques for mangrove mapping, International Journal of Remote Sensing, 19: 935-956. 29. Green, E. P., P. J. Mumby, A. J. Edwards and C. D. Clark (1996). A review of remote sensing for the assessment and management of tropical coastal resources, Coastal Management, 24: 1-40. 30. Gupta, K., A. Mukhopadhyay, S. Giri, A. Chanda, S. Datta Majumdar, S. Samanta, D. Mitra, R. N. Samal, A. K. Pattnaik and S. Hazra (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery, MethodsX, 5: 1129-1139. 31. Hamilton, Stuart E. and Daniel Casey (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21), Global Ecology and Biogeography, 25: 729-738. 32. Hansen, M. C., R. S. Defries, J. R. G. Townshend and R. Sohlberg (2010). Global land cover classification at 1 km spatial resolution using a classification tree approach, International Journal of Remote Sensing, 21: 1331-1364. 33. Heenkenda, Muditha, Joyce, Karen, Maier, Stefan, Bartolo and Renee (2014). Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs, Remote Sensing, 6: 6064-6088. 34. Hernández Cornejo, Rubi, Nico Koedam, Arturo Ruiz Luna, Max Troell and Farid Dahdouh-Guebas (2005). Remote Sensing and Ethnobotanical Assessment of the Mangrove Forest Changes in the Navachiste-San Ignacio-Macapule Lagoon Complex, Sinaloa, Mexico, Ecology and Society, 10. 35. Hu, Luojia, Nan Xu, Jian Liang, Zhichao Li, Luzhen Chen and Feng Zhao (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China, Remote Sensing, 12. 36. Jia, Wang, Wang, Mao and Zhang (2019). A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery, Remote Sensing, 11. 37. Jia, Mingming, Zongming Wang, Lin Li, Kaishan Song, Chunying Ren, Bo Liu and Dehua Mao (2013). Mapping China’s mangroves based on an object-oriented classification of Landsat imagery, Wetlands, 34: 277-283. 38. Jusoff (2006). Individual mangrove species identification and mapping in Port Klang using airborne hyperspectral imaging. Quản lý Tài nguyên rừng & Môi trường TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 - 2021 75 39. Kairo, J.G, F Dahdouh Guebas, J Bosire and Koedam (2002). Restoration and management of mangrove systems—A lesson for and from the East African region. 40. Kamal, Muhammad and Stuart Phinn (2011). Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach, Remote Sensing, 3: 2222-2242. 41. Khakhim, N., Muh A. Marfai, Arief Wicaksono, W. Lazuardi, Z. Isnaen, T. Walinono, Sandy Budi Wibowo, Andi B. Rimba, Ammar A. Aziz, Stuart Phinn, Josaphat Tetuko Sri Sumantyo, Hasti Widyasamratri and Sanjiwana Arjasakusuma (2019). Mangrove ecosystem data inventory using unmanned aerial vehicles (UAVs) in Yogyakarta coastal area. In Sixth Geoinformation Science Symposium. 42. Kovacs, J. M., J. Wang and M. Blanco-Correa (2001). Mapping disturbances in a mangrove forest using multi-date landsat TM imagery, Environ Manage, 27: 763-776. 43. Kuenzer, Claudia, Andrea Bluemel, Steffen Gebhardt, Tuan Vo Quoc and Stefan Dech (2011). 'Remote Sensing of Mangrove Ecosystems: A Review, Remote Sensing, 3: 878-928. 44. Kumar, Tanumi, Abhishek Mandal, Dibyendu Dutta, R. Nagaraja and Vinay Kumar Dadhwal (2017). Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans, Geocarto International, 34: 415-442. 45. Lee, Tsai Ming and Hui Chung Yeh (2009). 'Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan, Ecological Engineering, 35: 487-496. 46. Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang and J. W. Merchant (2010). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, International Journal of Remote Sensing, 21: 1303-1330. 47. Manna, Sudip and Barun Raychaudhuri (2018). Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition, Geocarto International, 35: 434-452. 48. Moritz Zimmermann, Anja, Keith A. McGuinness and Manfred Küppers (2001). Impacts of urban storm- water drainage channels on a northern Australian mangrove forest, Trees, 16: 195-203. 49. Parida, Bikash Ranjan and Anshu Kumari (2020). Mapping and modeling mangrove biophysical and biochemical parameters using Sentinel-2A satellite data in Bhitarkanika National Park, Odisha, Modeling Earth Systems and Environment. 50. Phạm Văn Duẩn, Lê Sỹ Doanh, Nguyễn Văn Thi, Vũ Thị Thìn, Hoàng Văn Khiên, Phạm Văn Dũng và Đinh Văn Tuyến (2019). Đánh giá khả năng khai thác ảnh vệ tinh quang học miễn phí phục vụ giám sát lớp phủ mặt đất, Tạp chí KH&CN Lâm nghiệp, số 3: 65-75. 51. Prasad, P. Rama Chandra, C. Sudhakar Reddy, K. Sundara Rajan, S. Hazan Raza and C. Bala Subrahmanya Dutt (2009). Assessment of tsunami and anthropogenic impacts on the forest of the North Andaman Islands, India, International Journal of Remote Sensing, 30: 1235- 1249. 52. Purnamasayangsukasih, Norizah K, Ismail Adnan A M and Shamsudin I (2016). A review of uses of satellite imagery in monitoring.PDF. 53. Rahman, Abdullah F., Danilo Dragoni, Kamel Didan, Armando Barreto-Munoz and Joseph A. Hutabarat (2013). Detecting large scale conversion of mangroves to aquaculture with change point and mixed- pixel analyses of high-fidelity MODIS data, Remote Sensing of Environment, 130: 96-107. 54. Rasolofoharinoro, M., F. Blasco, M. F. Bellan, M. Aizpuru, T. Gauquelin and J. Denis (2010). A remote sensing based methodology for mangrove studies in Madagascar, International Journal of Remote Sensing, 19: 1873-1886. 55. Saito, H., M. F. Bellan, A. Al-Habshi, M. Aizpuru and F. Blasco (2010). Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf, International Journal of Remote Sensing, 24: 4073-4092. 56. Selamat, M B, S Mashoreng, K Amri, Susetiono and R A Rappe (2020). The use of sentinel 2A imagery to improve mangrove inventorization at coremap CTI monitoring areas.pdf>, IOP Conf. Series: Earth and Environmental Science 564. 57. Selvam, V.; Ravichandran, K.K.; Gnanappazham, L.; Navamuniyammal, M. (2003 ). Assessment of community-based restoration of Pichavaram mangrove wetland using remote sensing data. 58. Sirikulchayanon, Poonthip, Wanxiao Sun and Tonny J. Oyana (2008). Assessing the impact of the 2004 tsunami on mangroves using remote sensing and GIS techniques, International Journal of Remote Sensing, 29: 3553-3576. 59. Sulong, I., Mohd-Lokman, H., Mohd-Tarmizi, K., Ismail, A. (2002). Mangrove mapping using Landsat imagery and aerial photographs: Kemaman District; Terengganu; Malaysia, Environ. Develop. Sustain., 4: 135-152. 60. Thu, Phan Minh and Jacques Populus (2007). Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam, Estuarine, Coastal and Shelf Science, 71: 98-109. 61. Tong, P. H. S., Y. Auda, J. Populus, M. Aizpuru, A. Al Habshi and F. Blasco (2010). Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming, International Journal of Remote Sensing, 25: 4795-4812. 62. Valiela, Ivan, Jennifer L. Bowen and Joanna K. York (2001). Mangrove Forests: One of the World's Threatened Major Tropical Environments, BioScience, 51. 63. Vasconcelos, M.J.; Mussá Biai, J.C.; Araújo, A.; Diniz, M.A. (2002). Land cover change in two protected areas of Guinea-Bissau (1956–1998), Appl. Geogr, 22: 139-156. 64. Veettil, Bijeesh Kozhikkodan, Sebastian Felipe Ruiz Pereira and Ngo Xuan Quang (2018). Rapidly diminishing mangrove forests in Myanmar (Burma): a review, Hydrobiologia, 822: 19-35. 65. Verhegghen, Astrid, Hugh Eva, Guido Ceccherini, Quản lý Tài nguyên rừng & Môi trường 76 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 – 2021 Frederic Achard, Valery Gond, Sylvie Gourlet-Fleury and Paolo Cerutti (2016). The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests, Remote Sensing, 8. 66. Vo, Quoc, Natascha Oppelt, Patrick Leinenkugel and Claudia Kuenzer (2013). Remote Sensing in Mapping Mangrove Ecosystems — An Object-Based Approach, Remote Sensing, 5: 183-201. 67. Wan, Luoma, Hongsheng Zhang, Guanghui Lin and Hui Lin (2019). A small-patched convolutional neural network for mangrove mapping at species level using high-resolution remote-sensing image, Annals of GIS, 25: 45-55. 68. Wang, Dezhi, Bo Wan, Penghua Qiu, Yanjun Su, Qinghua Guo, Run Wang, Fei Sun and Xincai Wu (2018). Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species, Remote Sensing, 10. 69. Wang, Le, Wayne P. Sousa, Peng Gong and Gregory S. Biging (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama, Remote Sensing of Environment, 91: 432-440. 70. Wang, Yeqiao, Gregory Bonynge, Jarunee Nugranad, Michael Traber, Amani Ngusaru, James Tobey, Lynne Hale, Robert Bowen and Vedast Makota (2003). Remote Sensing of Mangrove Change Along the Tanzania Coast, Marine Geodesy, 26: 35-48. 71. Xiong, Jun, Prasad Thenkabail, James Tilton, Murali Gumma, Pardhasaradhi Teluguntla, Adam Oliphant, Russell Congalton, Kamini Yadav and Noel Gorelick (2017). Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat- 8 Data on Google Earth Engine, Remote Sensing, 9. 72. Yaney Keller, A., P. Santidrian Tomillo, J. M. Marshall and F. V. Paladino (2019). Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica, PLoS One, 14: e0217310. 73. Younes Cárdenas, Nicolás, Karen E. Joyce and Stefan W. Maier (2017). Monitoring mangrove forests: Are we taking full advantage of technology?, International Journal of Applied Earth Observation and Geoinformation, 63: 1-14. 74. Zhang, Xuehong and Qingjiu Tian (2013). A mangrove recognition index for remote sensing of mangrove forest from space.pdf>. 75. Zhang, Xuehong, Paul M. Treitz, Dongmei Chen, Chang Quan, Lixin Shi and Xinhui Li (2017). Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure, International Journal of Applied Earth Observation and Geoinformation, 62: 201-214. AN OVERVIEW OF USING SATELLITE IMAGE TO ESTABLISH MANGROVE FOREST MAP Nguyen Trong Cuong1, Tran Quang Bao2, Pham Van Duan1, Pham Ngoc Hai3, Nguyen Hai Hoa1 1Vietnam National University of Forestry 2Vietnam Administration of Forestry 3Forest Inventory and Planning Institute SUMMARY This article synthesizes a number of studies to provide an overview of the application of remote sensing to establish mangrove maps in the world under two main topics: image materials and methods, indices to classify mangroves. The results show that studies on mapping mangrove forests usually use medium resolution remote sensing images, a few studies use high-resolution remote sensing images or aerial photography. In terms of the classification method, the development of remote sensing technology leads to the abundance of classification methods, and researches on mangrove forests often use supervised classification methods, commonly used techniques are vegetable indicators. By exploiting the characteristics of the mangrove ecosystem and the characteristics of remote sensing, the authors have developed different indices for classifying mangroves from other vegetation. There are 8 effective indices of mangrove forests, which are statistically calculated, all indices have different accuracy and advantages compared to the others. The use of each index should be based on mangrove condition, area, image and purpose of the map. Keywords: mangrove classification, mangrove classification index, mangrove forest, mangrove forest mapping, using of satellite image. Ngày nhận bài : 22/4/2021 Ngày phản biện : 26/5/2021 Ngày quyết định đăng : 04/6/2021

Các file đính kèm theo tài liệu này:

  • pdftong_quan_su_dung_tu_lieu_anh_vien_tham_de_lap_ban_do_rung_n.pdf