Bài báo tổng hợp các kết quả nghiên cứu về ứng dụng viễn thám để thành lập bản đổ rừng ngập mặn trên thế giới theo hai chủ đề chính: các tư liệu ảnh và các phương pháp xử lý ảnh; chỉ số để xác định rừng ngập mặn. Kết quả cho thấy, các nghiên cứu về thành lập bản đồ rừng ngập mặn thông thường sử dụng ảnh viễn thám có độ phân giải trung bình, một số ít nghiên cứu sử dụng ảnh viễn thám có độ phân giải cao hoặc sử dụng ảnh hàng không. Về phương pháp sử dụng, sự phát triển của kỹ thuật viễn thám dẫn đến sự phong phú của phương pháp phân loại, các nghiên cứu về rừng ngập mặn thường sử dụng phương pháp phân loại có giám sát, kỹ thuật áp dụng thường dùng là các chỉ số thực vật. Bằng cách khai thác các đặc trưng của hệ sinh thái rừng ngập mặn và đặc điểm của tư liệu viễn thám, các công trình đã phát triển các chỉ số khác nhau để phân loại rừng ngập mặn ra khỏi các thảm thực vật khác. Có 8 chỉ số phát hiện rừng ngập mặn hữu hiệu được thống kê, các chỉ số đều có độ chính xác và lợi thế khác nhau so với chỉ số còn lại, việc sử dụng các chỉ số này cần căn cứ vào điều kiện rừng, quy mô cụ thể của từng khu vực, tư liệu ảnh hiện có và mục tiêu của bản đồ
12 trang |
Chia sẻ: Thục Anh | Lượt xem: 277 | Lượt tải: 0
Nội dung tài liệu Tổng quan sử dụng tư liệu ảnh viễn thám để lập bản đồ rừng ngập mặn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
e and W. Tekeuchi (2019). A Review of Remote
Sensing Approaches for Monitoring Blue Carbon
Quản lý Tài nguyên rừng & Môi trường
74 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 – 2021
Ecosystems: Mangroves, Seagrassesand Salt Marshes
during 2010-2018, Sensors (Basel), 19.
14. Friedl, Mark A., Damien Sulla-Menashe, Bin Tan,
Annemarie Schneider, Navin Ramankutty, Adam Sibley
and Xiaoman Huang (2010). MODIS Collection 5 global
land cover: Algorithm refinements and characterization
of new datasets, Remote Sensing of Environment, 114:
168-182.
15. Gang and Agatsiva (1992). The current status of
mangroves along the Kenyan coast: A case study of Mida
Creek mangroves based on remote sensing,
Hydrobiologia 247: 29-36.
16. Gao, J. (1999). A comparative study on spatial and
spectral resolutions of satellite data in mapping mangrove
forests, International Journal of Remote Sensing, 20:
2823-2833.
17. Gao, Jay (1997). A hybrid method toward accurate
mapping of mangroves in a marginal habitat from SPOT
multispectral data, International Journal of Remote
Sensing, 19: 1887-1899.
18. Gathot Winarso, Anang D. Purwanto, Doddy
M.Yuwono (2014). New Mangrove Index As
Degradation Health Indicator Using Remote Sensing
Data: Segara Anakan and Alas Purwo Case Study.
19. Ghosh, Manoj, Lalit Kumar and Chandan Roy
(2016). Mapping Long-Term Changes in Mangrove
Species Composition and Distribution in the Sundarbans,
Forests, 7.
20. Giri, C., J. Long, S. Abbas, R. M. Murali, F. M.
Qamer, B. Pengra and D. Thau (2015). Distribution and
dynamics of mangrove forests of South Asia, J Environ
Manage, 148: 101-111.
21. Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A.
Singh, T. Loveland, J. Masek and N. Duke (2011b).
Status and distribution of mangrove forests of the world
using earth observation satellite data, Global Ecology and
Biogeography, 20: 154-159.
22. Giri, Chandra, P. Defourny and Surendra Shrestha
(2010). Land cover characterization and mapping of
continental Southeast Asia using multi-resolution
satellite sensor data, International Journal of Remote
Sensing, 24: 4181-4196.
23. Giri, Chandra, Jordan Long and Larry Tieszen
(2011). Mapping and Monitoring Louisiana's Mangroves
in the Aftermath of the 2010 Gulf of Mexico Oil Spill,
Journal of Coastal Research, 277: 1059-1064.
24. Giri, Chandra, Bruce Pengra, Zhiliang Zhu,
Ashbindu Singh and Larry L. Tieszen (2007). Monitoring
mangrove forest dynamics of the Sundarbans in
Bangladesh and India using multi-temporal satellite data
from 1973 to 2000, Estuarine, Coastal and Shelf Science,
73: 91-100.
25. Giri, Muhlhausen (2008). Mangrove Forest
Distributions and Dynamics in Madagascar (1975–2005).
26. Gong, Peng, Jie Wang, Le Yu, Yongchao Zhao,
Yuanyuan Zhao, Lu Liang, Zhenguo Niu, Xiaomeng
Huang, Haohuan Fu, Shuang Liu, Congcong Li, Xueyan
Li, Wei Fu, Caixia Liu, Yue Xu, Xiaoyi Wang, Qu Cheng,
Luanyun Hu, Wenbo Yao, Han Zhang, Peng Zhu, Ziying
Zhao, Haiying Zhang, Yaomin Zheng, Luyan Ji, Yawen
Zhang, Han Chen, An Yan, Jianhong Guo, Liang Yu, Lei
Wang, Xiaojun Liu, Tingting Shi, Menghua Zhu, Yanlei
Chen, Guangwen Yang, Ping Tang, Bing Xu, Chandra
Giri, Nicholas Clinton, Zhiliang Zhu, Jin Chen and Jun
Chen (2012). Finer resolution observation and monitoring
of global land cover: first mapping results with Landsat
TM and ETM+ data, International Journal of Remote
Sensing, 34: 2607-2654.
27. Gorelick, Noel, Matt Hancher, Mike Dixon,
Simon Ilyushchenko, David Thau and Rebecca Moore
(2017). Google Earth Engine: Planetary-scale geospatial
analysis for everyone, Remote Sensing of Environment,
202: 18-27.
28. Green, E. P., C. D. Clark, P. J. Mumby, A. J.
Edwards and A. C. Ellis (2010). Remote sensing
techniques for mangrove mapping, International Journal
of Remote Sensing, 19: 935-956.
29. Green, E. P., P. J. Mumby, A. J. Edwards and C.
D. Clark (1996). A review of remote sensing for the
assessment and management of tropical coastal resources,
Coastal Management, 24: 1-40.
30. Gupta, K., A. Mukhopadhyay, S. Giri, A. Chanda,
S. Datta Majumdar, S. Samanta, D. Mitra, R. N. Samal,
A. K. Pattnaik and S. Hazra (2018). An index for
discrimination of mangroves from non-mangroves using
LANDSAT 8 OLI imagery, MethodsX, 5: 1129-1139.
31. Hamilton, Stuart E. and Daniel Casey (2016).
Creation of a high spatio-temporal resolution global
database of continuous mangrove forest cover for the 21st
century (CGMFC-21), Global Ecology and
Biogeography, 25: 729-738.
32. Hansen, M. C., R. S. Defries, J. R. G. Townshend
and R. Sohlberg (2010). Global land cover classification
at 1 km spatial resolution using a classification tree
approach, International Journal of Remote Sensing, 21:
1331-1364.
33. Heenkenda, Muditha, Joyce, Karen, Maier,
Stefan, Bartolo and Renee (2014). Mangrove Species
Identification: Comparing WorldView-2 with Aerial
Photographs, Remote Sensing, 6: 6064-6088.
34. Hernández Cornejo, Rubi, Nico Koedam, Arturo
Ruiz Luna, Max Troell and Farid Dahdouh-Guebas
(2005). Remote Sensing and Ethnobotanical Assessment
of the Mangrove Forest Changes in the Navachiste-San
Ignacio-Macapule Lagoon Complex, Sinaloa, Mexico,
Ecology and Society, 10.
35. Hu, Luojia, Nan Xu, Jian Liang, Zhichao Li,
Luzhen Chen and Feng Zhao (2020). Advancing the
Mapping of Mangrove Forests at National-Scale Using
Sentinel-1 and Sentinel-2 Time-Series Data with Google
Earth Engine: A Case Study in China, Remote Sensing, 12.
36. Jia, Wang, Wang, Mao and Zhang (2019). A New
Vegetation Index to Detect Periodically Submerged
Mangrove Forest Using Single-Tide Sentinel-2 Imagery,
Remote Sensing, 11.
37. Jia, Mingming, Zongming Wang, Lin Li, Kaishan
Song, Chunying Ren, Bo Liu and Dehua Mao (2013).
Mapping China’s mangroves based on an object-oriented
classification of Landsat imagery, Wetlands, 34: 277-283.
38. Jusoff (2006). Individual mangrove species
identification and mapping in Port Klang using airborne
hyperspectral imaging.
Quản lý Tài nguyên rừng & Môi trường
TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 - 2021 75
39. Kairo, J.G, F Dahdouh Guebas, J Bosire and
Koedam (2002). Restoration and management of
mangrove systems—A lesson for and from the East
African region.
40. Kamal, Muhammad and Stuart Phinn (2011).
Hyperspectral Data for Mangrove Species Mapping: A
Comparison of Pixel-Based and Object-Based Approach,
Remote Sensing, 3: 2222-2242.
41. Khakhim, N., Muh A. Marfai, Arief Wicaksono,
W. Lazuardi, Z. Isnaen, T. Walinono, Sandy Budi
Wibowo, Andi B. Rimba, Ammar A. Aziz, Stuart Phinn,
Josaphat Tetuko Sri Sumantyo, Hasti Widyasamratri and
Sanjiwana Arjasakusuma (2019). Mangrove ecosystem
data inventory using unmanned aerial vehicles (UAVs) in
Yogyakarta coastal area. In Sixth Geoinformation Science
Symposium.
42. Kovacs, J. M., J. Wang and M. Blanco-Correa
(2001). Mapping disturbances in a mangrove forest using
multi-date landsat TM imagery, Environ Manage, 27:
763-776.
43. Kuenzer, Claudia, Andrea Bluemel, Steffen
Gebhardt, Tuan Vo Quoc and Stefan Dech (2011).
'Remote Sensing of Mangrove Ecosystems: A Review,
Remote Sensing, 3: 878-928.
44. Kumar, Tanumi, Abhishek Mandal, Dibyendu
Dutta, R. Nagaraja and Vinay Kumar Dadhwal (2017).
Discrimination and classification of mangrove forests
using EO-1 Hyperion data: a case study of Indian
Sundarbans, Geocarto International, 34: 415-442.
45. Lee, Tsai Ming and Hui Chung Yeh (2009).
'Applying remote sensing techniques to monitor shifting
wetland vegetation: A case study of Danshui River
estuary mangrove communities, Taiwan, Ecological
Engineering, 35: 487-496.
46. Loveland, T. R., B. C. Reed, J. F. Brown, D. O.
Ohlen, Z. Zhu, L. Yang and J. W. Merchant (2010).
Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data,
International Journal of Remote Sensing, 21: 1303-1330.
47. Manna, Sudip and Barun Raychaudhuri (2018).
Mapping distribution of Sundarban mangroves using
Sentinel-2 data and new spectral metric for detecting their
health condition, Geocarto International, 35: 434-452.
48. Moritz Zimmermann, Anja, Keith A. McGuinness
and Manfred Küppers (2001). Impacts of urban storm-
water drainage channels on a northern Australian
mangrove forest, Trees, 16: 195-203.
49. Parida, Bikash Ranjan and Anshu Kumari (2020).
Mapping and modeling mangrove biophysical and
biochemical parameters using Sentinel-2A satellite data
in Bhitarkanika National Park, Odisha, Modeling Earth
Systems and Environment.
50. Phạm Văn Duẩn, Lê Sỹ Doanh, Nguyễn Văn Thi,
Vũ Thị Thìn, Hoàng Văn Khiên, Phạm Văn Dũng và Đinh
Văn Tuyến (2019). Đánh giá khả năng khai thác ảnh vệ
tinh quang học miễn phí phục vụ giám sát lớp phủ mặt
đất, Tạp chí KH&CN Lâm nghiệp, số 3: 65-75.
51. Prasad, P. Rama Chandra, C. Sudhakar Reddy, K.
Sundara Rajan, S. Hazan Raza and C. Bala Subrahmanya
Dutt (2009). Assessment of tsunami and anthropogenic
impacts on the forest of the North Andaman Islands,
India, International Journal of Remote Sensing, 30: 1235-
1249.
52. Purnamasayangsukasih, Norizah K, Ismail Adnan
A M and Shamsudin I (2016). A review of uses of satellite
imagery in monitoring.PDF.
53. Rahman, Abdullah F., Danilo Dragoni, Kamel
Didan, Armando Barreto-Munoz and Joseph A.
Hutabarat (2013). Detecting large scale conversion of
mangroves to aquaculture with change point and mixed-
pixel analyses of high-fidelity MODIS data, Remote
Sensing of Environment, 130: 96-107.
54. Rasolofoharinoro, M., F. Blasco, M. F. Bellan, M.
Aizpuru, T. Gauquelin and J. Denis (2010). A remote
sensing based methodology for mangrove studies in
Madagascar, International Journal of Remote Sensing,
19: 1873-1886.
55. Saito, H., M. F. Bellan, A. Al-Habshi, M. Aizpuru
and F. Blasco (2010). Mangrove research and coastal
ecosystem studies with SPOT-4 HRVIR and TERRA
ASTER in the Arabian Gulf, International Journal of
Remote Sensing, 24: 4073-4092.
56. Selamat, M B, S Mashoreng, K Amri, Susetiono
and R A Rappe (2020). The use of sentinel 2A imagery to
improve mangrove inventorization at coremap CTI
monitoring areas.pdf>, IOP Conf. Series: Earth and
Environmental Science 564.
57. Selvam, V.; Ravichandran, K.K.; Gnanappazham,
L.; Navamuniyammal, M. (2003 ). Assessment of
community-based restoration of Pichavaram mangrove
wetland using remote sensing data.
58. Sirikulchayanon, Poonthip, Wanxiao Sun and
Tonny J. Oyana (2008). Assessing the impact of the 2004
tsunami on mangroves using remote sensing and GIS
techniques, International Journal of Remote Sensing, 29:
3553-3576.
59. Sulong, I., Mohd-Lokman, H., Mohd-Tarmizi, K.,
Ismail, A. (2002). Mangrove mapping using Landsat
imagery and aerial photographs: Kemaman District;
Terengganu; Malaysia, Environ. Develop. Sustain., 4:
135-152.
60. Thu, Phan Minh and Jacques Populus (2007).
Status and changes of mangrove forest in Mekong Delta:
Case study in Tra Vinh, Vietnam, Estuarine, Coastal and
Shelf Science, 71: 98-109.
61. Tong, P. H. S., Y. Auda, J. Populus, M. Aizpuru,
A. Al Habshi and F. Blasco (2010). Assessment from
space of mangroves evolution in the Mekong Delta, in
relation to extensive shrimp farming, International
Journal of Remote Sensing, 25: 4795-4812.
62. Valiela, Ivan, Jennifer L. Bowen and Joanna K.
York (2001). Mangrove Forests: One of the World's
Threatened Major Tropical Environments, BioScience, 51.
63. Vasconcelos, M.J.; Mussá Biai, J.C.; Araújo, A.;
Diniz, M.A. (2002). Land cover change in two protected
areas of Guinea-Bissau (1956–1998), Appl. Geogr, 22:
139-156.
64. Veettil, Bijeesh Kozhikkodan, Sebastian Felipe
Ruiz Pereira and Ngo Xuan Quang (2018). Rapidly
diminishing mangrove forests in Myanmar (Burma): a
review, Hydrobiologia, 822: 19-35.
65. Verhegghen, Astrid, Hugh Eva, Guido Ceccherini,
Quản lý Tài nguyên rừng & Môi trường
76 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP SỐ 3 – 2021
Frederic Achard, Valery Gond, Sylvie Gourlet-Fleury
and Paolo Cerutti (2016). The Potential of Sentinel
Satellites for Burnt Area Mapping and Monitoring in the
Congo Basin Forests, Remote Sensing, 8.
66. Vo, Quoc, Natascha Oppelt, Patrick Leinenkugel
and Claudia Kuenzer (2013). Remote Sensing in
Mapping Mangrove Ecosystems — An Object-Based
Approach, Remote Sensing, 5: 183-201.
67. Wan, Luoma, Hongsheng Zhang, Guanghui Lin
and Hui Lin (2019). A small-patched convolutional
neural network for mangrove mapping at species level
using high-resolution remote-sensing image, Annals of
GIS, 25: 45-55.
68. Wang, Dezhi, Bo Wan, Penghua Qiu, Yanjun Su,
Qinghua Guo, Run Wang, Fei Sun and Xincai Wu (2018).
Evaluating the Performance of Sentinel-2, Landsat 8 and
Pléiades-1 in Mapping Mangrove Extent and Species,
Remote Sensing, 10.
69. Wang, Le, Wayne P. Sousa, Peng Gong and
Gregory S. Biging (2004). Comparison of IKONOS and
QuickBird images for mapping mangrove species on the
Caribbean coast of Panama, Remote Sensing of
Environment, 91: 432-440.
70. Wang, Yeqiao, Gregory Bonynge, Jarunee
Nugranad, Michael Traber, Amani Ngusaru, James
Tobey, Lynne Hale, Robert Bowen and Vedast Makota
(2003). Remote Sensing of Mangrove Change Along the
Tanzania Coast, Marine Geodesy, 26: 35-48.
71. Xiong, Jun, Prasad Thenkabail, James Tilton,
Murali Gumma, Pardhasaradhi Teluguntla, Adam
Oliphant, Russell Congalton, Kamini Yadav and Noel
Gorelick (2017). Nominal 30-m Cropland Extent Map of
Continental Africa by Integrating Pixel-Based and
Object-Based Algorithms Using Sentinel-2 and Landsat-
8 Data on Google Earth Engine, Remote Sensing, 9.
72. Yaney Keller, A., P. Santidrian Tomillo, J. M.
Marshall and F. V. Paladino (2019). Using Unmanned
Aerial Systems (UAS) to assay mangrove estuaries on the
Pacific coast of Costa Rica, PLoS One, 14: e0217310.
73. Younes Cárdenas, Nicolás, Karen E. Joyce and
Stefan W. Maier (2017). Monitoring mangrove forests:
Are we taking full advantage of technology?,
International Journal of Applied Earth Observation and
Geoinformation, 63: 1-14.
74. Zhang, Xuehong and Qingjiu Tian (2013). A
mangrove recognition index for remote sensing of
mangrove forest from space.pdf>.
75. Zhang, Xuehong, Paul M. Treitz, Dongmei Chen,
Chang Quan, Lixin Shi and Xinhui Li (2017). Mapping
mangrove forests using multi-tidal remotely-sensed data
and a decision-tree-based procedure, International
Journal of Applied Earth Observation and
Geoinformation, 62: 201-214.
AN OVERVIEW OF USING SATELLITE IMAGE
TO ESTABLISH MANGROVE FOREST MAP
Nguyen Trong Cuong1, Tran Quang Bao2, Pham Van Duan1, Pham Ngoc Hai3, Nguyen Hai Hoa1
1Vietnam National University of Forestry
2Vietnam Administration of Forestry
3Forest Inventory and Planning Institute
SUMMARY
This article synthesizes a number of studies to provide an overview of the application of remote sensing to
establish mangrove maps in the world under two main topics: image materials and methods, indices to classify
mangroves. The results show that studies on mapping mangrove forests usually use medium resolution remote
sensing images, a few studies use high-resolution remote sensing images or aerial photography. In terms of the
classification method, the development of remote sensing technology leads to the abundance of classification
methods, and researches on mangrove forests often use supervised classification methods, commonly used
techniques are vegetable indicators. By exploiting the characteristics of the mangrove ecosystem and the
characteristics of remote sensing, the authors have developed different indices for classifying mangroves from
other vegetation. There are 8 effective indices of mangrove forests, which are statistically calculated, all indices
have different accuracy and advantages compared to the others. The use of each index should be based on
mangrove condition, area, image and purpose of the map.
Keywords: mangrove classification, mangrove classification index, mangrove forest, mangrove forest
mapping, using of satellite image.
Ngày nhận bài : 22/4/2021
Ngày phản biện : 26/5/2021
Ngày quyết định đăng : 04/6/2021
Các file đính kèm theo tài liệu này:
- tong_quan_su_dung_tu_lieu_anh_vien_tham_de_lap_ban_do_rung_n.pdf