Tiểu luận Bài Môn kiến trúc máy tính

Thuật ngữ x 64 hay x86-64 dùng để chỉ kiến trúc tập lệnh 64-bit do AMD phát triển và được AMD, Intel, VIA và nhiều nhà sản xuất khác sử dụng trong các sản phẩm BLX. Khác với kiến trúc 64-bit trước đó là IA-64 được Intel sử dụng trong các BXL Itanium, kiến trúc x86-64 cho phép chạy các ứng dụng 32-bit mà không cần phải biên dịch lại và hiệu suất không bị suy giảm như khi chạy ở chế độ mô phỏng x86-32 trên BXL Itanium Điều này đặc biệt quan trọng vì hiện nay đa phần ứng dụng là 32-bit. Với ưu điểm trên x86-64 là kiến trúc 64-bit được dùng phổ biến hơn cho đến thời điểm hiện nay.

docx62 trang | Chia sẻ: luyenbuizn | Lượt xem: 1440 | Lượt tải: 0download
Bạn đang xem trước 20 trang nội dung tài liệu Tiểu luận Bài Môn kiến trúc máy tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Báo cáo tiểu luận MÔN KIẾN TRÚC MÁY TÍNH Lớp: D08CNTT1 - Giảng viên: Phạm Hoàng Duy NHÓM 4: Nguyến Sơn Hà Nguyễn Tiến Thành Nguyễn Văn Thành Lê Hùng Cường Trịnh Ngọc Hà MỤC LỤC Kiến trúc tập lệnh x64 (Nguyễn Sơn Hà, Nguyễn Tiến Thành) Giới thiệu Intel x58 Express Chipset (Nguyễn Văn Thành) Giới thiệu mainboard GA EX58 Extreme (Lê Hùng Cường) Đánh giá hiệu năng (Trịnh Ngọc Hà) A.KIẾN TRÚC TẬP LỆNH X64 Thuật ngữ x 64 hay x86-64 dùng để chỉ kiến trúc tập lệnh 64-bit do AMD phát triển và được AMD, Intel, VIA và nhiều nhà sản xuất khác sử dụng trong các sản phẩm BLX. Khác với kiến trúc 64-bit trước đó là IA-64 được Intel sử dụng trong các BXL Itanium, kiến trúc x86-64 cho phép chạy các ứng dụng 32-bit mà không cần phải biên dịch lại và hiệu suất không bị suy giảm như khi chạy ở chế độ mô phỏng x86-32 trên BXL Itanium Điều này đặc biệt quan trọng vì hiện nay đa phần ứng dụng là 32-bit. Với ưu điểm trên x86-64 là kiến trúc 64-bit được dùng phổ biến hơn cho đến thời điểm hiện nay. Kiến trúc mới tăng không gian bộ nhớ phẳng cho các phần mềm lên 64 bit và hỗ trợ không gian địa chỉ vật lý lên đến 40 bit. Chế độ 64-bit hỗ trợ những tính năng mới sau: 64-bit địa chỉ có nghĩa là ứng dụng có thể sử dụng 16EB (Exabytes) bộ nhớ (264). Các bộ xử lý hiện tại có thể đánh địa chỉ cho không gian bộ nhớ lên đến 256 TB (248). Giới hạn này là do kích thước có hạn của FSB. Trong tương lai bộ vi xử lí có thể truy cập không gian bộ nhớ phẳng lên tới 16EB. Thêm 8 thanh ghi: những thanh ghi mới này có tên là R8 tới R15. R được hiểu là thanh ghi 64 bit. Trong mode 64 bit, CPU có tất cả 16 thanh ghi 64 bit . Thêm 8 thanh ghi sử dụng cho tập lệnh SIMD (MMX, SSE, SSE2, SSE3). Khi đó bộ vi xử lí có tất cả 16 thanh ghi MMX 64 bit. Thanh ghi XMM có độ dài 128 bit , số thanh ghi XMM tăng từ 8 lên 16 thanh ghi . Những thanh ghi XMM được sử dụng trong những phép tính dấu phảy động SSE. Tất cả các con trỏ thanh ghi và con trỏ lệnh có độ rộng 64 bit. Thanh ghi trong FPU có độ rộng 80 bit . Sử dụng kỹ thuật Fast interrupt-priorization. Con trỏ lệnh 64-bit RIP (relative data addressing mode) mới I. Những đặc điểm của x86-64 Kiến trúc x86-64 đưa ra 2 thành phần mới: long mode, và phần mở rộng thanh ghi. 1. Long mode (IA-32e mode) Kiến trúc x86-64 mở rộng kiến trúc x86 bằng cách thêm vào một chế độ hoạt động gọi là long mode. Long mode được điều khiển bằng một bit gọi là LMA (Long Mode Active). Khi tắt LMA, bộ xử lý hoạt động như một bộ xử lý chuẩn x86, và nó tương thích với mọi hệ điều hành cũng như ứng dụng 16 và 32-bit từ trước. Khi bật long mode (LMA=1) các mở rộng 64-bit được kích hoạt. Tính năng này khiến cho hệ thống tự động cấu hình theo phần mềm. Hệ điều hành 64-Bit (LMA) Ứng dụng 64-Bit (CSD L Bit) Kích thước dữ liệu (CSD D Bit) Chế độ hoạt động của CPU 0 X 0 16-Bit chuẩn 0 X 1 32-Bit chuẩn 1 0 0 Tương thích 16-Bit 1 0 1 Tương thích 32-Bit 1 1 0 64-Bit 1 1 1 Dự phòng Mode Yêu cầu hệ điều hành Cần dịch lại ứng dụng Mặc định Kích thước địa chỉ Kích thước toán hạng Dùng mở rộng thanh ghi Độ rộng thanh ghi đa năng Long mode (IA-32e mode) 64-bit Hệ điều hành 64-bit Có 64 32 Có 64 Chế độ tương thích Không 32 Không 32 16 Legacy mode Hệ điều hành 32-bit hoặc 16-bit Không 32 32 Không 32 16 16 Long mode lại bao gồm 2 chế độ: 64-bit và chế độ tương thích (xem 3.1.1: Intel® 64 Architecture). Các mode này sử dụng 2 bit trong thanh ghi mô tả đoạn mã (code segment descriptor). Bit đầu tiên là bit “D” (default size) có sẵn, điều khiển kích thước của toán hạng. Bit thứ hai là “bit L” (bit thứ 53 trước đây chưa được sử dụng), nó dùng để định rõ liệu một ứng dụng là 64-bit hay đang ở chế độ tương thích. Kích thước địa chỉ mặc định là 64-bit, và kích thước toán hạng mặc định là 32-bit. Kích thước này có thể định nghĩa lại bằng các tiếp đầu lệnh (mục 3.6.1: Opervà Size và Address Size in 64-Bit Mode). Một tiếp đầu lệnh REX mới được thêm vào để chỉ định kích thước toán hạng 64-bit và những thanh ghi mới. Chế độ này được kích hoạt vận hành trên cơ sở hệ thống mã phân đoạn riêng lẻ. 2. Phần mở rộng thanh ghi Để định địa chỉ logic cho các thanh ghi, các vi xử lý có kiến trúc x86-64 mở rộng thiết kế đã sử dụng trong các tập lệnh 16-bit và 32-bit. Tất cả thanh ghi 64 bit được chia thành những thanh ghi nhỏ 8 bit. Sơ đồ dưới đây gọi là “uniform byte-register addressing”. Với chế độ hoạt động 16-bit ,2 byte của thanh ghi A được định địa chỉ là AX. Với chế độ hoạt động 32-bit ,4 byte của thanh ghi A được định địa chỉ là EAX. Với chế độ hoạt động 64-bit ,8 byte của thanh ghi A được định địa chỉ là RAX. Ở chế đô 64-bit các thanh ghi đa năng (GPR) được mở rộng lên 64 bit .Chúng được gọi là RAX, RBX, RDX, RDI, RSI, RBD, RSP, RIP và RFLAGS .Các thanh ghi 64-bit này được mở rộng từ các thanh ghi trước dùng cho các tập lệnh 16 bit ,32 bit. Có 8 thanh ghi đa năng mới được thêm vào đưa tổng số thanh ghi đa năng lên 16 thanh.Các thanh ghi mới này có tên từ R8 đến R15. Phần mở rộng thanh ghi cũng bao gồm 8 thanh ghi dùng cho tập lệnh SIMD ,đưa tổng số thanh ghi cho tập lệnh này lên 16 ,Các thanh ghi mới này có tên từ XMM8 đến XMM15. Các thanh ghi phân đoạn (ES, DS, FS, GS và SS) được bỏ qua trong chế độ 64-bit. Nhưng CS (code segment) vẫn còn tồn tại trong chế độ 64-bit (mục 3.4.2.1: Segment Registers in 64-Bit Mode). CS là cần thiết để đóng gói các chế độ mặc định của bộ xử lý (16 -, 32 - hoặc 64-bit mode) cũng như mức độ ưu tiên thực hiện. Như đã nói ở trên, các bit D và L là bit dùng để xác định địa chỉ mặc định và kích thước toán hạng. Các DPL được sử dụng để kiểm tra tính ưu tiên thực hiện. Cơ số và các trường giới hạn được bỏ qua. II.Tập lệnh x86-64 1.Dạng lệnh: [Mã gợi nhớ] [toán hạng 1], [toán hạng 2], [toán hạng 3] Số lượng toán hạng 0, 1, 2, hay 3 phụ thuộc vào mã gợi nhớ. Toáng hạng 1 là toán hạng đích, lưu kết quá của phép toán, (các) toán hạng sau (nếu có) là toán hạng nguồn. Mỗi toán hạng có thể là: Một giá trị trực tiếp (ngoại trừ toán hạng đích) Một thanh ghi Một địa chỉ trên bộ nhớ 2.Các nhóm lệnh Các lệnh đa dụng (general-purpose instructions) Các lệnh hệ thống (system instructions) 64-bit mode instructions (Đây là nhóm lệnh cơ bản của tập lệnh x86-64, các nhóm lệnh như MMX, SSE, VMX, SMX được nhà sản xuất đưa vào từng dòng sán phẩm cụ thể nên không xét đến) a. Các lệnh đa dụng (general-purpose instructions) Đây là nhóm lệnh tính toán cơ sở mà lập trình viên thường xuyên sử dụng nhất. Bao gồm: Các lệnh truyền dữ liệu (data transfer instructions) Các phép tính số học nhị phân (binary arithmetic instructions) Các phép tính số học thập phân (decimal arithmetic instructions) Các phép tính luận lý (logical instructions) Các lệnh dịch và xoay (shift và rotate instructions) Các lệnh thao tác trên Bit và Byte (Bit và Byte instructions) Các câu lệnh điều khiển (control transfer instructions) Các lệnh xử lý chuỗi (string instructions) Các lệnh vào ra (I/O instructions) Bắt đầu, ra khỏi khối lệnh (enter và leave instructions) Điều khiển các cờ (EFLAG) Các câu lệnh với thanh ghi đoạn (segment register instructions) Các lệnh khác Bảng sau tóm tắt các lệnh thông dụng của nhóm này: Tên Đối số Phép toán Mô tả Nhóm lệnh mov SRC, DST DST = SRC Sao chép nguồn vào đích Truyền dữ liệu xchg SRC, DST DST = SRC, SRC = DST Hoán chuyển đẩy SRC (%esp) = SRC; %esp -= 4; Đẩy vào stack pop DST DST = (%esp); %esp += 4; Lấy ra khỏi stack xor SRC, DST DST = DST ^ SRC Bitwise xor Luận lý or SRC, DST DST = DST | SRC Bitwise or và SRC, ST DST = DST & SRC Bitwise và cmp A, B EFLAGS = B - A So sánh Số học test A, B EFLAGS = B & A Và inc DST DST++ Tăng dec DST DST- Giảm add SRC, DST DST = DST + SRC Cộng sub SRC, DST DST = DST - SRC Trừ mul SRC %edx:%eax = %eax * SRC Nhân (không dấu) imul SRC %edx:%eax = %eax * SRC Nhân (có dấu) div SRC %edx = %eax MOD SRC; %eax = %eax / SRC; Chia (không dấu) idiv SRC %edx = %eax MOD SRC; %eax = %eax / SRC; Chia (có dấu) jmp LABEL Nhảy vô điều kiện Các lệnh nhảy je LABEL Nhảy nếu bằng jne LABEL Nhảy nếu không bằng jg LABEL Nhảy nếu lơn hơn jge LABEL Nhảy nếu lớn hơn hoặc bằng jl LABEL Nhảy nếu nhỏ hơn jle LABEL Nhảy nếu nhỏ hơn hoặc bằng call LABEL Gọi thủ tục con loop LABEL Vòng lặp loope LABEL loopz LABEL loopnz LABEL int INT_NR Gây ra ngắt số hiệu INT_NR Khác b. Các lệnh hệ thống (system instructions) Bảng sau liệt kê các lệnh dùng để hỗ trợ hệ điều hành trong việc điều khiển các chức năng của bộ VXL: Tên lệnh Chức năng LGDT Nạp thanh ghi bảng mô tả toàn cục (GDT register) SGDT Lưu thanh ghi bảng mô tả toàn cục (GDT register) LLDT Nạp thanh ghi bảng mô tả cục bộ (LDT register) SLDT Lưu thanh ghi bảng mô tả cục bộ (LDT register) LTR Nạp thanh ghi tác vụ STR Nhớ thanh ghi tác vụ LIDT Nạp thanh ghi bảng mô tả ngắt (IDT register) SIDT Lưu thanh ghi bảng mô tả ngắt (IDT register) MOV Nạp và lưu các thanh nghi điều khiển (control registers) LMSW Nạp trang thái (16 bit trạng thái) SMSW Lưu trạng thái CLTS Xóa cờ chuyển tác vụ ARPL Điều chỉnh quyền ưu tiên LAR Nạp quyền truy cập LSL Nạp giới hạn phân đoạn VERR Xác nhận đoạn để đọc VERW Xác nhận đoạn để ghi MOV Nạp và lưu thanh ghi soát lỗi (debug registers) INVD Vô hiệu hóa cache, không ghi trở lại. WBINVD Vô hiệu hóa cache, ghi trở lại. INVLPG Vô hiệu hóa TLB (Translation lookaside buffer) LOCK (prefix) Khóa Bus HLT Một nửa bộ VXL RSM Trở lại từ chế độ quản lý hệ thống (system management mode - SMM) RDMSR Mô hình đọc-chỉ định thanh ghi WRMSR Mô hình ghi-chỉ định thanh ghi RDPMC Đọc bộ đếm giám sát hiệu năng RDTSC Đọc bộ đếm time stamp RDTSCP Đọc bộ đếm time stamp và ID của bộ VLX SYSENTER Fast System Call, chuyển sang nhân flat protected mode với CPL = 0 SYSEXIT Fast System Call, chuyển sang nhân flat protected mode với CPL = 0 XSAVE Lưu các cờ mở rộng vào bộ nhớ XRSTOR Khôi phục các cờ mở rộng từ bộ nhớ XGETBV Đọc trạng thái của một thanh ghi điều khiển mở rộng (extended control registers) XSETBV Ghi trạng thái của một thanh ghi điều khiển mở rộng (extended control registers) c. x87 FPU (Floating Point Unit) instructions (các lệnh sử dụng đơn vị tính toán dấu chấm động) Tuy không thuộc nhóm các lệnh cơ bản nhưng đây là một nhóm rất quan trọng có trong tất cả các vi xử lý x86 hiện đại. Nhóm lệnh này hỗ trợ tính toán trên số nguyên, số thực dấu chấm động, xử lý thập phân/nhị phân … Đó là cơ sở cho các tính toán đồ họa và khoa học phức tạp của các hệ thống bên trên. Định dạng của các toán hạng: STn Một thanh ghi của bộ đồng xử lý toán học (80x87) F Số thực D Số thực (độ chính xác cao) E Kiểu số thực mở rộng (không thuộc 3 loại dưới) I16 word (16-bit) I32 double word (32-bit) I64 quad word (64-bit) FABS ST0 = |ST0| FADD src ST0 += src STn FD FADD dest, ST0 dest += STO STn FADDP dest [,ST0] dest += STO STn FCHS ST0 = −ST0 FCOM src So sánh ST0 và src STn FD FCOMP src So sánh ST0 và src STn FD FCOMPP src So sánh ST0 và ST1 FCOMI src So sánh vào FLAGS STn FCOMIP src So sánh vào FLAGS STn FDIV src ST0/= src STn FD FDIV dest, ST0 dest /=STO STn FDIVP dest [,ST0] dest /=STO STn FDIVR src ST0= src /ST0 STn FD FDIVR dest, ST0 dest =ST0/dest STn FDIVRP dest [,ST0] dest =ST0/dest STn FFREE dest Đánh dấu rỗng STn FIADD src ST0+= src I16I32 FICOM src So sánh ST0 và src I16I32 FICOMP src So sánh ST0 và src I16I32 FIDIV src STO/= src I16I32 FIDIVR src STO= src /ST0 I16I32 FILD src Đẩy src vào satck I16I32I64 FIMUL src ST0*= src I16I32 FINIT Khởi tạo bộ đồng xử lý FIST dest Lưu ST0 I16I32 FISTP dest Lưu ST0 I16I32I64 FISUB src ST0-= src I16I32 FISUBR src ST0= src -ST0 I16I32 FLD src Đẩy src vào satck STn FDE FLD1 Đẩy 1.0 vào satck FLDCW src Nạp thanh ghi từ điều khiển I16 FLDPI Đẩy π vào satck FLDZ Đẩy 0.0 vào satck FLDL2E Đẩy log2e vào satck FLDLN2 Đẩy loge2 vào satck FLDL2T Đẩy lg 2 vào satck FLDLG2 Đẩy 0.0 vào satck FMUL src ST0*= src STn FD FMUL dest, STO dest *=STO STn FMULP dest [,STO] dest *=STO STn FRNDINT Round ST0 FSCALE ST0 = ST0 × 2[ST1] FSQRT ST0 = ST01/2 FSIN Sin FCOS Cosin FSINCOS Sin và cos FPTAN Tan FPATAN arctan F2XM1 2x-1 FYL2X y∗log2x FYL2XP1 y∗log2(x+1) FST dest Lưu ST0 STn FD FSTP dest Lưu ST0 STn FDE FSTCW dest Lưu thanh ghi từ điều khiển I16 FSTSW dest Lưu thanh ghi từ trạng thái I16AX FSUB src ST0-= src STn FD FSUB dest, STO dest -=STO STn FSUBP dest [,STO] dest -=STO STn FSUBR src ST0= src -ST0 STn FD FSUBR dest, STO dest =ST0-dest STn FSUBP dest [,STO] dest =ST0-dest STn FTST So sánh ST0 với 0.0 FXCH dest Hoán đổi ST0 và dest STn d. 64-bit mode instructions Chế độ 64-bit xuất hiện cùng với một vài lệnh mới. Phần lớn chúng hỗ trợ cho việc mở rộng cho không gian địa chỉ lên 64-bit. CDQE Chuyển số nguyên từ doubleword (32-bit) sang quadword (64-bit) CMPSQ So sánh chuỗi CMPXCHG16B So sánh RDX:RAX với m128 LODSQ Nạp quadword tại địa chỉ (R)SI vào RAX MOVSQ Copy (R)SI vào (R)DI MOVZX (64-bits) Copy doubleword sang quadword, thêm các bit 0 STOSQ Lưu RAX tại địa chỉ RDI SWAPGS Hoán đổi GS base register value với giá trị ở địa chỉ C0000102H của MSR SYSCALL Gọi nhanh các thủ tục hệ thống có mức ưu tiên là 0 SYSRET Trở lại từ fast system call III. Kết luận Ưu điểm của kiến trúc x86-64 Không gian địa chỉ 64-bit. Mở rộng các thanh ghi. Sử dụng tập lệnh quen thuộc. Khả năng chạy ứng dụng 32-bit trong hệ điều hành 64-bit. Khả năng chạy hệ điều hành 32-bit. Nhược điểm của kiến trúc x86-64 Kiến trúc mới không có nhược điểm nào lớn cả. Ta có thể chỉ ra bộ nhớ của chương trình phải tăng thêm một chút vì kích thước lớn hơn của địa chỉ và toán hạng. Nhưng nó cũng không ảnh hướng đến kích thước mã lệnh hay yêu cầu về bộ nhớ chính. Tuy nhiên có một thực tế là kiến trúc x86-64 không đem lại hiệu quả gì mới ngoại trừ khả năng tương thích ngược với các phần mềm 32-bit và 16-bit. Không có đột phá về mặt hiệu năng. Tuy nhiên theo các thử nghiệm, trung bình, ta có thể mong đợi tăng 5-15% sau khi dịch lại chương trình. B. GIỚI THIỆU INTEL X58 EXPRESS CHIPSET Giới thiệu Tiếp theo các dòng chipset cao cấp khác như x38, x48... Intel tiếp tục cho ra đời dòng chipset x58. Các Intel X58 Express Chipset tiếp tục thúc đẩy sự đổi mới vơi khả năng thiết kế để cung cấp chất lượng, hiệu quả và khả năng đứng đầu. Các Intel X58 Express Chipset đạt được hiệu quả bằng cách hỗ trợ các vi xử lý mới nhất của gia đình processors at 6.4 GT/s and 4.8 GT/s speeds via the QuickIntel ® Core i7 với tốc độ cao 6,4 GT / s và formance by supporting the latest Intel® Core™ i7 family of 4,8 GT /s thông qua Quick Path Interconnect (QPI). Hệ thống cho phép tăng chiều rộng các băng thông bằng cách hỗ trợ các công nghệ hàng đầu chẳng hạn như PCI Express 2.0 graphics, Intel ® Turbo Memory và hỗ trợ Intel ®High – Performance Solid State drivers. Kiến trúc chipset X58 Kiến trúc tổng thể chipset X58 Chíp cầu Bắc Chipset cầu bắc được sinh ra với vai trò là trung tâm truyền tải dữ liệu giữa các linh kiện, sao cho hệ thống được vận hành một cách ổn định nhất. Chíp cầu bắc được kết nối trực tiếp với chíp cầu nam để truyền tải dữ liệu vào CPU với thành phần kết nối DMI (tốc độ 2Gb/s). Khác với các dòng chíp khác với vi kiến trúc mới được sử dụng trên Intel Core i7, bộ điều khiển bộ nhớ được đưa vào trong CPU. Nên trong chipset X58 bộ điều khiển bộ nhớ (Memory Controller) không nằm trong chipset cầu bắc như các dòng chipset khác như P35, P45, X38, X48 và tất cả các dữ liệu từ RAM khi chuyển vào CPU cũng không phải thông qua băng thông (max 1600 Mhz) nhỏ hẹp của FSB nữa mà được kết nối trực tiếp với CPU theo kiểu kết nối QPI. Với việc Memory Controller đã được tích hợp vào trong CPU thì Chip cầu Bắc (North Bigde ) chỉ còn làm nhiệm vụ kết nối giữa CPU với Chip cầu nam (South Bigde), điều khiển bus PCI – Express và có thêm bộ phận điều khiển QPI thì Chip cầu bắc với cái tên MCH (Memory Controller Hub)không còn nữa mà được đổi tên thành IOH (I/O Controller Hub). QPI - Quick Path Interconnect QPI là một giao tiếp có tốc độ cực cao, được thiết kế để thay thế khái niệm FSB trước đây. QPI không phải là một bus như FSB mà là một dạng CSI(Common System Interface) point-to-point processor interconnect (kết nối điểm-tới-điểm giữa các processor) như HyperTransport bên AMD. QPI cung cấp 2 đường truyền riêng biệt(lane in/lane out) để trao đổi thông tin giữa các CPU với nhau và giữa CPU với IOH. Phiên bản đầu tiên của QPI hoạt động với tốc độ từ 4,8 tới 6.4 GT/s (Gigatransfer/s) mỗi lane. QPI có thể truyền dải tín hiệu có độ dài từ 5-20 bit trên mỗi lane, bandwidth của QPI có thể đạt giá trị từ 12-16GB/s với mỗi lane, 24-32GB/s với một link QPI. Mẫu CPU Intel Nehalem vừa được trình diễn ở IDF vừa rồi là mẫu CPU sử dụng QPI với link 20bit-wide, 25,6GB/s. Bandwidth mà mẫu CPU này đạt được gấp đôi bandwidth của những CPU QX9775 1600MHz FSB. DMI – ( Desktop management interface ) Thành phần kết nối giữa chip cầu bắc và chip cầu nam.Nó được tích hợp với tốc độ cao tiên tiến ,dựa trên ưu tiên phục vụ cho phép lưu lượng truy cập đồng thời và khả năng chuyển giao chính xác. Để cung cấp chuyên giao chính xác thì DMI luôn hỗ trợ chip cầu nam trên hai kênh ảo là: VC0 và VC1.Hai kênh luôn cung cấp một chương trình cố định ,với VC1 luôn có trọng số ưu tiên cao nhất.VC 0 là kênh mặc định lưu lượng truy cập vào luôn luôn được kich hoạt. 2. Chíp cầu nam Chipset cầu nam là nơi kết nối trực tiếp với các thiết bị thông qua chíp cầu bắc đưa dữ liệu vào trong CPU. Được sản xuất trên dây chuyền công nghệ 90nm khá cũ, chíp cầu nam xuất hiện với 02 phiên bản: ICH10R hỗ trợ RAID và ICH10 không hỗ trợ RAID. Với chíp cầu nam này mainboad có thể hỗ trợ: Lên đến sáu PCI-Express 1 ports (PCI-E 1.1) Tối đa bốn khe PCI Sáu cổng Serial ATA II sáu thiết bị SATA300 (SATA-II, tiêu chuẩn thế hệ thứ hai của tiêu chuẩn), AHCI và NCQ (ICH10 hỗ trợ chế độ này chỉ có trong Windows Vista), cắm nóng, eSATA, và splitter ports RAID (chỉ ICH10R ) 0, 1, 0 +1 (10) và 5 có chức năng Matrix RAID (cùng một mảng của ổ đĩa có thể được sử dụng trong một số chế độ RAID - ví dụ, hai ổ đĩa có thể tạo RAID 0 và RAID 1, mỗi mảng sẽ sử dụng một phần riêng của đĩa) 12 x USB 2.0 thiết bị (trên hai bộ điều khiển máy chủ lưu trữ EHCI) hỗ trợ cắm nóng Gigabit Ethernet MAC điều khiển và giao diện đặc biệt (LCI / GLCI) cho một bộ điều khiển PHY (i82567 cho Gigabit Ethernet, i82562 cho Fast Ethernet) Intel Turbo Memory (chỉ ICH10R) High Definition Audio (7,1) Binding cho tốc độ thấp và ngoại vi đã lỗi thời, những thứ khác Kết nối các bộ phận Socket LGA 1336 Có thể nhiều người trong chúng ta đã quá quen với socket LGA775 của Intel xuất hiện từ hơn 5 năm trước. Với việc tích hợp thêm bộ điều khiển bộ nhớ vào trong CPU khiến 775 điểm tiếp xúc trở nên thiếu thốn cho việc cấp điện, cũng như truyền tải dữ liệu mật độ cao. Và đó là lý do socket LGA1366 cao cấp ra đời, với kích thước to và có nhiều điểm tiếp xúc hơn so với LGA775 PCI – Express và các chế độ cạc đồ họa Với hai giao diện đồ họa PCI Express 2.0 x16, một trong số chúng có thể được chia thành hai nửa tốc độ giao diện đồ họa hoặc thậm chí bốn giao diện (1 / 4 của tốc độ ban đầu). Vì thế chipset sử dụng chung với Core i7 cho phép thiết lập các hệ thống có từ 01 đến 04 card đồ họa theo các tốc độ 1x16, 2x16, (1x16 + 2x8), hoặc 4x8 đường PCI-E 2.0. Như vậy, chúng ta có thể linh động thay đổi hệ thống xử lý đồ họa dựa trên hai công nghệ đa nhân đồ họa nổi tiếng nhất thế giới là ATi CrossFire hay nVidia SLI. Bộ nhớ kênh ba ( Triple Channel Memory ) Thay cho bộ nhớ kênh đôi (dual-channel) dư thừa trước kia, Intel chuyển sang sử dụng khái niệm bộ nhớ kênh ba (triple-channel). Tương tự như trước, bộ nhớ kênh ba cho phép nhân gấp ba lần băng thông RAM, tương đương 25.5Gb/s cho cả 3 thanh RAM DDR3. Serial ATA (SATA) 3 Gb/s Với khả năng lưu trữ cao hỗ trợ đường truyền nhanh hơn, cải thiện khả năng truy cập dữ liệu với 6 cổng SATA eSATA Giao thức SATA được thiết kế để sử dụng với các thiết bị SATA bên ngoài. Nó cung cấp một liên kết dữ liệu tốc độ đến 3 Gb / s để loại bỏ các đường hẹp với giải pháp lưu trữ hiện hành bên ngoài. SATA port disable Cho phép cá nhân người dùng có thể kích hoạt hay vô hiệu hóa cổng SATA khi cần thiết. Tính năng này cung cấp thêm khả năng bảo vệ dữ liệu bằng cách ngăn ngừa loại bỏ độc hại hoặc chèn dữ liệu qua cổng SATA USB port disable Cho phép cá nhân người dùng có thể kích hoạt hay vô hiệu hóa cổng SATA khi cần thiết. Tính năng này cung cấp thêm khả năng bảo vệ dữ liệu bằng cách ngăn ngừa loại bỏ độc hại hoặc chèn dữ liệu qua cổng SATA So sánh X58 và các chipset khác So với các dòng chipset trước đây của Intel chíp x58 tỏa ít nhiệt hơn nhờ bộ điều khiển bộ nhớ đã được gỡ bỏ. Nhưng nhìn tổng thể thì sự khác biệt là không nhiều. Các thông tin về chipset X58 được cập nhật trong bảng dưới đây: Chipset (Northbridge) X58 IOH X48 MCH X38 MCH P45 MCH Bus xử lý, băng thông QPI, 25.6 GB/s FSB, 12.8 GB/s FSB, 10.7 GB/s FSB, 10.7 GB/s Điều khiển bộ nhớ, Hình thức tối đa - 2xDDR3-1600 2xDDR3-1333 2xDDR3-1333 Bộ điều chỉnh QPI PCI Express 2.0 2xPCIEx16 + PCIEx4 2xPCIEx16 2xPCIEx16 PCIEx16 TDP, W 24.1 30.5 26.5 22 Nhiệt phát ra (Idle), W 8.5 15.1 12.3 9 Nói chung, chipset X58 không có yêu cầu đặc biệt về tản nhiệt (cũng tương tự như chipset P45). V. Kết luận Khi bộ điều khiển bộ nhớ được dời từ chipset cầu bắc vào trong CPU thì nhiệm vụ của chipset X58 trở nên nhẹ nhàng hơn rất nhiều. Ngoài việc điều khiển các đường PCI-E 2.0, thì X58 được xem như là một trạm trung chuyển lớn với băng thông rất rộng, tốc độ cao. Điều này cho phép luồng dữ liệu trao đổi giữa các thiết bị trong hệ thống được vận hành một cách ổn định và hiệu quả nhất. Nhưng chúng ta không thể nói rằng chipset X58 này được bổ xung thêm nhiều tính năng hữu ích để chúng ta có thể nâp cấp bo mạch chủ với chíp sét này. Nhưng nếu như chúng ta muốn sử dụng chip corei7 thì việc lựa chọn chipset này là việc hiển nhiên. Phối hợp với chipset cầu nam ICH10(R), các bo mạch chủ sử dụng X58 đem đến một môi trường làm việc với rất nhiều cổng kết nối thiết bị ngoại vi. Các công nghệ cao cấp được sử dụng như Intel Turbo Memory hay Intel Matrix Technology tăng tốc tối đa hệ thống cũng như đảm bảo an toàn cho dữ liệu cho máy tính. Đó là một chipset mới tốt với một tính năng độc đáo hỗ trợ chính thức cho cả SLI và CrossFireX. C. MAINBOARD GIGABYTE GA-EX58-EXTREME I, Tổng quan Nhìn chung, GA-X58 Extreme có rất nhiều điểm mạnh so với các mainboard khác, nổi bật nhất trong số đó : Công nghệ Ultra Durable 3 Classic (CPU VRM) làm mát bằng đồng giúp giảm nhiệt độ khi hoạt động, trở kháng trong mạch giảm 50%, chất lượng tín hiệu trong mạch tăng lên, giảm nhiễu EMI và đặc biệt là khả năng ép xung đáng kinh ngạc với độ ổn định cao. Hỗ trợ bộ vi xử lý mới nhất Intel® Core™ i7 processors trong socket LGA1366 với QPI 6.4 GT/s Thiết kế tiết kiệm điện năng tiên tiến với công nghệ DES sử dụng phần cứng áp dụng công nghệ tự động điều chỉnh Dynamic 6-Gear BMC cung cấp cho người dùng đến 6 khe cắm bộ nhớ loại DDR3 với dung lượng tối đa lên đến 24GB cũng như cho phép thiết lập chế độ chạy bộ nhớ kênh ba Chuẩn bị đầy đủ các cổng giao tiếp từ thông thường như: 10 cổng SATA có hỗ trợ thiết lập RAID, 12 cổng USB, 2 cổng GigaLAN,... đến cao cấp hơn gồm 3 cổng IEEE 1394, 8 kênh âm thanh có kèm cổng S/PDIF quang, đồng trục Hai khe PCI Express 2.0 tốc độ 16x và có thể hỗ trợ đồng thời cả hai công nghệ đồ họa đa nhân ATI CrossFireX và nVidia SLI Nâng cao nguồn điện 12 +2 +2 giai đoạn thiết kế hỗ trợ với VRD 11,1 Với thiết kế mới Hybrid Silent-Pipe 2 là giải pháp tản nhiệt hợp nhất giữa tản nhiệt nước, tản nhiệt không ổn mang đến hiệu quả gần như cao nhất hiện nay. Hiệu quả lên đến 30% trong môi trường nước Duy nhất IC điều khiển phần cứng để cung cấp chi tiết chính xác điện áp kiểm soát 100% thiết kế sử dụng tụ nhôm rắn của Nhật Bản, 50,000 (Japanese Solid Capacitors) Onboard Debug LED hiển thị đơn giản việc xử lý sự cố của bo mạch chủ Bằng sáng chế của DualBIOS với khả năng bảo vệ phần cứng trong BIOS 2 Gigabit Ethernet LAN với chức năng Teaming Hỗ trợ chức năng âm thanh Dolby Home Theater tạo ra âm thanh vòm Power/reset/Clr CMOS tích hợp nút trong onboard để dễ dàng thực hiện trên Workbench Cổng xuất của Blu-ray được hỗ trợ chất lượng cao bởi âm thanh 106dB SNR ALC889A HD Có 40 làn PCIe được bố trí trong hai x16 liên kết, liên kết DMI… II.BIOS BIOS Được sản xuất một phần hướng đến các overclocker, hay những tay tàn phá linh kiện hàng đầu thế giới, tất cả các phiên bản BIOS của GA-EX58X đều tập trung tất cả các tùy chọn để overclock vào mục MB Intelligent Tweaker (M.I.T), và đặt ở vị trí đầu tiên khi chúng ta nhìn vào BIOS (dĩ nhiên là không xem theo kiểu Nhật hoặc Trung Quốc). Nói chung, nhận xét đầu tiên khi đả

Các file đính kèm theo tài liệu này:

  • docxNhóm 4.docx
  • docxx86-64.docx
Tài liệu liên quan