Một trong những lĩnh vực tìm kiếm Internet được người dùng quan tâm nhất đó
chính là tìm kiếm thông tin vềthực thểngười. Thực thểngười là một trong những loại
thực thểcó độnhập nhằng cao nhất, một tên có thể ứng với các thực thểngười khác
nhau, và những tên khác nhau có thể ứng với một thực thểngười. Tuy nhiên các máy
tìm kiếm hiện nay vẫn thao thác các văn bản chứa tên người giống nhưcác văn bản
bình thường khác dẫn đến các kết quảtìm kiếm không được nhưngười dùng mong
đợi.
Khóa luận tập trung nghiên cứu phương pháp giải quyết nhập nhằng tên người
trên tập văn bản trên miền dữliệu báo điện tửtiếng Việt dựa trên đặc trưng vềtừvựng
và mạng xã hội và đềxuất áp dụng xây dựng một hệthống tìm kiếm thực thểngười.
Thực nghiệm ban đầu với tập tên người có độnhập nhằng cao cho thấy mô hình
phân biệt nhập nhằng tên người trên tập văn bản có độchính xác khá cao và đạt độ đo
F ởmức tốt (F0.5= 0.791 và F0.2= 0.773). Kết quảtrên cho thấy phương pháp phân
biệt nhập nhằng tên người đã đềxuất và triển khai là khảquan cho ngôn ngữtiếng
Việt.
50 trang |
Chia sẻ: luyenbuizn | Lượt xem: 1037 | Lượt tải: 0
Bạn đang xem trước 20 trang nội dung tài liệu Phân biệt nhập nhằng tên người trong hệ thống tìm kiếm thực thể, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Nguyễn Đạo Thái
PHÂN BIỆT NHẬP NHẰNG TÊN NGƯỜI TRONG HỆ
THỐNG TÌM KIẾM THỰC THỂ
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
HÀ NỘI - 2010
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Nguyễn Đạo Thái
PHÂN BIỆT NHẬP NHẰNG TÊN NGƯỜI TRONG HỆ
THỐNG TÌM KIẾM THỰC THỂ
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
Cán bộ hướng dẫn: PSG.TS Hà Quang Thụy
Cán bộ đồng hướng dẫn: ThS Trần Mai Vũ
HÀ NỘI - 2010
Lời cảm ơn
Trước tiên, tôi xin gửi lời cảm ơn và lòng biết ơn sâu sắc nhất tới Phó Giáo sư
Tiến sĩ Hà Quang Thụy và Thạc sỹ Trần Mai Vũ, người đã tận tình chỉ bảo và hướng
dẫn tôi trong suốt quá trình thực hiện khoá luận tốt nghiệp.
Tôi chân thành cảm ơn các thầy, cô đã tạo những điều kiện thuận lợi cho tôi học
tập và nghiên cứu tại trường Đại Học Công Nghệ.
Tôi cũng xin gửi lời cảm ơn tới các anh chị và các bạn sinh viên trong nhóm “Khai
phá dữ liệu” phòng thí nghiệm KT-Sislab đã giúp tôi rất nhiều trong việc hỗ trợ kiến
thức chuyên môn để hoàn thành tốt khoá luận.
Cuối cùng, tôi muốn gửi lời cảm vô hạn tới gia đình và bạn bè, những người thân
yêu luôn bên cạnh và động viên tôi trong suốt quá trình thực hiện khóa luận tốt nghiệp.
Tôi xin chân thành cảm ơn !
Sinh viên
Nguyễn Đạo Thái
Tóm tắt nội dung
Một trong những lĩnh vực tìm kiếm Internet được người dùng quan tâm nhất đó
chính là tìm kiếm thông tin về thực thể người. Thực thể người là một trong những loại
thực thể có độ nhập nhằng cao nhất, một tên có thể ứng với các thực thể người khác
nhau, và những tên khác nhau có thể ứng với một thực thể người. Tuy nhiên các máy
tìm kiếm hiện nay vẫn thao thác các văn bản chứa tên người giống như các văn bản
bình thường khác dẫn đến các kết quả tìm kiếm không được như người dùng mong
đợi.
Khóa luận tập trung nghiên cứu phương pháp giải quyết nhập nhằng tên người
trên tập văn bản trên miền dữ liệu báo điện tử tiếng Việt dựa trên đặc trưng về từ vựng
và mạng xã hội và đề xuất áp dụng xây dựng một hệ thống tìm kiếm thực thể người.
Thực nghiệm ban đầu với tập tên người có độ nhập nhằng cao cho thấy mô hình
phân biệt nhập nhằng tên người trên tập văn bản có độ chính xác khá cao và đạt độ đo
F ở mức tốt (F0.5 = 0.791 và F0.2 = 0.773). Kết quả trên cho thấy phương pháp phân
biệt nhập nhằng tên người đã đề xuất và triển khai là khả quan cho ngôn ngữ tiếng
Việt.
Mục lục
Chương 1. Bài toán phân biệt nhập nhằng tên người trong hệ thống tìm kiếm
thực thể. .......................................................................................................................... 3
1.1. Hệ thống tìm kiếm thực thể .................................................................................. 3
1.1.1. Những thuận lợi và khó khăn trong việc khai thác thông tin trên WWW ..... 3
1.1.2. Hệ thống tìm kiếm thực thể ............................................................................ 4
1.1.3. Vấn đề giải quyết nhập nhằng tên trong hệ thống tìm kiếm thực thể người .. 7
1.2. Bài toán phân biệt nhập nhằng tên người trên tập văn bản. .................................. 9
1.2.1. Phát biểu bài toán ........................................................................................... 9
1.2.3. Mối quan hệ với bài toán phân biệt nhập nhằng nghĩa của từ. ...................... 9
1.2.3. Phương pháp đánh giá .................................................................................. 10
Tóm tắt chương một ................................................................................................ 11
Chương 2. Phương pháp giải quyết bài toán nhập nhằng tên người trên tập văn
bản ................................................................................................................................. 12
2.1. Tiếp cận dựa trên thực thể định danh ................................................................. 12
2.2. Tiếp cận dựa trên từ khóa ................................................................................... 14
2.3. Tiếp cận dựa trên kỹ thuật trích xuất thông tin ................................................... 18
2.4. Một số cách tiếp cận khác ................................................................................... 20
Tóm tắt chương hai .................................................................................................. 21
Chương 3: Mô hình hệ thống phân biệt nhập nhằng tên người .............................. 22
3.1. Cơ sở thực tiễn .................................................................................................... 22
3.2. Cơ sở lý thuyết .................................................................................................... 24
3.2.1. Mô hình không gian vector .......................................................................... 24
3.2.2. Thuật toán phân cụm HAC .......................................................................... 26
3.3. Mô hình hệ thống phân biệt nhập nhằng tên người trên tập văn bản ................. 31
3.4. Áp dụng bài toán phân biệt nhập nhằng tên người trong hệ thống tìm kiếm thực
thể người .................................................................................................................... 33
Tóm tắt chương ba ................................................................................................... 34
Chương 4. Thực nghiệm và đánh giá ......................................................................... 35
4.1. Môi trường và các công cụ sử dụng thực nghiệm. ............................................. 35
4.2. Xây dựng tập dữ liệu ........................................................................................... 36
4.3. Thực nghiệm ....................................................................................................... 37
Thực nghiệm phân biệt nhập nhằng tên người trên tập văn bản. .......................... 37
Kết luận ........................................................................................................................ 41
Tài liệu tham khảo ....................................................................................................... 42
Danh sách hình vẽ
Hình 1 - Kết quả tìm kiếm từ Google với truy vấn “nokia 6030” ................................... 5
Hình 2 - Đồ thị giữa các trang Web dưới góc nhìn thực thể ........................................... 5
Hình 3 - Kiến trúc hệ thống tìm kiếm thực thể tiêu biểu dựa trên kỹ thuật trích xuất
thông tin. .......................................................................................................................... 6
Hình 4 - Hệ thống tìm kiếm nơi nghỉ mát của Cazoodle ................................................ 7
Hình 5 - Danh sách top 10 từ khóa được tìm kiếm trong Google, Bing và Yahoo năm
2009 ................................................................................................................................. 8
Hình 7 - Các mẫu trích xuất sinh tự động cho ngày sinh .............................................. 19
Hình 8 - Đoạn trích từ bài báo “Năm 2010: ĐH Quốc gia Hà Nội tuyển sinh 5.500 chỉ
tiêu” ............................................................................................................................... 22
Hình 9 - Đoạn trích từ bài báo “Cá ngừ độc là do chứa histamin tự do” ...................... 23
Hình 10 - Trích từ bài báo “11 giám đốc bưu điện đồng loạt hầu tòa” từ trang
vnexpress.net ................................................................................................................. 23
Hình 11 - Trích từ bài báo “Siêu lừa Nguyễn Lâm Thái có dấu hiệu tâm thần” từ trang
vnexpress.net ................................................................................................................. 24
Hình 13 - Quy trình phân cụm ....................................................................................... 26
Hình 14 - Ví dụ về thuật toán K-means ......................................................................... 27
Hình 15 - Hình vẽ minh họa cho phân cụm dữ liệu dựa trên mật độ. ........................... 27
Hình 16 - Sơ đồ các phân tử trước khi phân cụm .......................................................... 28
Hình 17 - Sơ đồ các phần tử sau khi phân cụm phân cấp ............................................. 28
Hình 18 - Phân cụm với Single-linkage ........................................................................ 30
Hình 19 - Phân cụm với Complete-linkage ................................................................... 30
Hình 20 - Trung bình các khoảng cách trong GAAC .................................................... 31
Hình 22 - Trích từ bài viết “Lê Thị Thanh Nhàn – nữ PGS toán học trẻ nhất VN” -báo
dantri.com.vn ................................................................................................................. 39
Hình 23 - Trích từ bài viết “Kịch tính vòng chung khảo Nhân tài đất Việt CNTT
2008!” – báo dantri.com.vn ........................................................................................... 39
Danh sách các từ viết tắt
HAC Hierarchical agglomerative clustering
GAAC Group-average agglomerative clustering
WSD Word Sense Disambiguation
WWW World Wide Web
1
Mở đầu
Sự ra đời của các máy tìm kiếm đã giúp ích cho con người rất nhiều trong các
hoạt động khai thác thông tin. Tuy nhiên, chất lượng tìm kiếm thông tin vẫn còn nhiều
hạn chế, đặc biệt là tìm kiếm thông tin về người, một trong những lĩnh vực có truy vấn
lớn nhất trong các máy tìm kiếm. Mặt khác, thực thể người là một trong những loại
thực thể có độ nhập nhằng cao nhất, vì vậy mà các kết quả trả về bởi máy tìm kiếm sẽ
bao gồm tất cả những người có tên giống nhau và người dùng cần phải đọc lần lượt để
tìm ra kết quả mong muốn. Vì vậy mà cần thiết phải có một hệ thống có khả năng gom
cụm kết quả sao cho những trang Web thuộc cùng một cụm nói về một người, và
những trang Web thuộc các cụm khác nhau nói về những người khác nhau.
Bài toán cốt lõi cho vấn đề này là bài toán giải quyết nhập nhằng tên người trên
tập văn bản. Bài toán này đã nhận được sự quan tâm từ các nhà nghiên cứu trong các
hội nghị lớn trong những năm gần đây như Colling, ACL, Senseval…Đặc biệt là hội
nghị WebPS1, hội nghị dành riêng cho các vấn đề giải quyết nhập nhằng tên người
trong kết quả tìm kiếm Web. Trong những năm gần đây, có rất nhiều nghiên cứu và ý
tưởng được đề xuất trên thế giới để giải quyết bài toán này,
Tuy nhiên, đối với tiếng Việt thi các nghiên cứu về bài toán này vẫn còn rất hạn
chế. Các nghiên cứu tập trung chủ yếu vào việc thể hiện tốt nhất các ngữ cảnh riêng
biệt cho từng người, tìm các độ đo tương đồng ngữ cảnh phù hợp và phân cụm ngữ
cảnh, hay phân cụm văn bản chứa ngữ cảnh. Và các phương pháp thường chỉ thao tác
trên một miền dữ liệu tương đối đặc thù, chứ không có một phương pháp khả thi trên
nhiều miền dữ liệu. Việc tìm ra một phương pháp tốt cho tiếng Việt vẫn là một vấn đề
khó khăn, mặc dù tiếng Việt đã giải quyết được một số bài toán cơ sở (thuộc đề tài KC
01.01/06-10), tuy nhiên so với nhu cầu của bài toán giải quyết nhập nhằng tên người
thì vẫn chưa đủ.
Mục tiêu của khóa luận là khảo sát, nghiên cứu để đưa ra một phương pháp đủ
tốt giải quyết bài toán phân biệt nhập nhằng tên người trên miền dữ liệu báo điện tử
tiếng Việt. Để đạt được mục tiêu này, khóa luận khảo sát một số phương pháp tiêu
biểu nhất giải quyết bài toán này trên thế giới. Từ đó, khóa luận đưa ra phương pháp
giải quyết bài toán phân biệt nhập nhằng tên người trên tập văn bản tiếng Việt. Đầu
tiên, khảo sát miền dữ liệu báo điện tử để tìm ra những đặc trưng tốt (dựa trên từ vựng
và đặc điểm mạng xã hội) thể hiện riêng biệt cho một người, phân biệt người đó với
những người khác cùng tên. Tiếp đó, thực hiện việc gom cụm các văn bản chứa tên
1
2
người này bằng thuật toán HAC. Khóa luận đã thực nghiệm với kết quả độ đo F đạt
mức tốt so với kết quả của thế giới (F 5.0 = 0.791 và F 2.0 = 0.773); đồng thời, đề xuất
một mô hình hệ thống tìm kiếm thực thể người dựa trên kết quả bài toán này.
Nội dung của khóa luận được chia thành các chương như sau:
Chương 1: Khóa luận giới thiệu khái quát về hệ thống tìm kiếm thực thể và bài
toán giải quyết nhập nhằng tên người trên tập tài liệu, vai trò của bài toán đối với hệ
thống tìm kiếm thực thể người. Khóa luận cũng trình bày mối liên hệ của bài toán với
bài toán phân biệt nhập nhằng nghĩa của từ, và phương pháp đánh giá cho bài toán
phân biệt nhập nhằng tên người trên tập văn bản.
Chương 2: Khóa luận giới thiệu chi tiết các phương pháp tiêu biểu để giải
quyết vấn đề phân biệt nhập nhằng tên người trên tập văn bản.
Chương 3: Khoá luận đã giới thiệu các đặc trưng của miền dữ liệu báo điện tử
để từ đó đề xuất ra mô hình giải quyết bài toán nhập nhằng tên người trên tập văn bản
và ứng dụng bài toán đó trong việc đề xuất mô hình hệ thống tìm kiếm thực thể người.
Chương 4: Thực nghiệm, kết quả và đánh giá. Tiến hành thực nghiệm việc việc
phân biệt nhập nhằng trên miền dữ liệu báo điện tử tiếng Việt với tập dữ liệu kiểm thử
là những tên người có độ nhập nhằng cao.
Phần kết luận: Tóm lược kết quả đạt được của khóa luận và định hướng phát
triển tương lai.
3
Chương 1. Bài toán phân biệt nhập nhằng tên người trong hệ
thống tìm kiếm thực thể.
Tìm kiếm thông tin là nhu cầu thiết yếu trong cuộc sống con người. Con người
có được thông tin mong muốn từ rất nhiều các nguồn tài liệu khác nhau như sách vở,
tạp chí, và đặc biệt là Internet. Internet là một kho dữ liệu đồ sộ, tuy nhiên khai thác nó
là một thách thức lớn vì dữ liệu trên Internet quá đa dạng và không có cấu trúc. Con
người mong muốn có những thông tin ở dạng thực thể, bản ghi (thông tin có cấu trúc)
hơn là việc phải đọc lần lượt từng trang Web để tìm ra thông tin mình mong muốn.
Một trong những đối tượng tìm kiếm được quan tâm nhất là tìm kiếm người. Tuy
nhiên, khi thực hiện thu thập thông tin về một người, chúng ta vấp phải thách thức là
những người khác nhau có cùng tên nhưng người chúng ta mong muốn tìm kiếm chỉ là
một trong số họ. Vì vậy đối với các hệ thống tìm kiếm thực thể người, giải quyết bài
toán nhập nhằng tên có một ý nghĩa rất quan trọng. Chương này sẽ giới thiệu một số
khái niệm và các vấn đề liên quan đến bài toán phân biệt nhập nhằng tên người trong
máy tìm kiếm thực thể.
1.1. Hệ thống tìm kiếm thực thể
1.1.1. Những thuận lợi và khó khăn trong việc khai thác thông tin trên WWW
Khối lượng dữ liệu khổng lồ trên WWW là nguồn tài quyên quý giá cho người
dùng trong việc khai thác và tìm kiếm thông tin phục vụ cho nhu cầu hiểu biết của
mình. Người dùng có thể truy cập nguồn tài nguyên này mọi lúc, mọi nơi một cách
thuận tiện; họ có nhiều cơ hội tìm kiếm, tổng hợp các tri thức để tạo ra những giá trị
mới. Tuy nhiên, khai khác nguồn tri thức này thế nào cho hiệu quả là một vấn đề lớn.
Đặc biệt là khi lượng thông tin trên WWW ngày càng nhiều, và luôn thay đổi hàng
ngày hàng giờ tiêu biểu là các tờ báo điện tử tin tức cập nhật trang tin, các website về
thị trường chứng khoán. Hình thức thông tin ngày càng đa dạng từ văn bản đến âm
thanh, hình ảnh làm cho con người cảm giác ngập trong tri thức, khó khăn trong việc
tìm ra tri thức mình cần. Do đó, cần phải có một cách thức tổ chức, quản lý, điều hành,
cập nhật thông tin từ WWW phù hợp để thuận lợi cho việc khai thác
Máy tìm kiếm ra đời như một công cụ hữu ích trợ giúp trong việc khai thác thông
tin trên WWW, và phần nào đáp ứng được nhu cầu người dùng. Máy tìm kiếm có một
cách tổ chức tương đối phức tạp nhằm mục tiêu cải thiện chất lượng khai thác thông
tin, bao gồm các thành phần chính [10]:
4
• Crawler: Thành phần này chịu trách nhiệm đi dọc theo các siêu liên kết trên
WWW để thu thập các trang web để đảm bảo tính đầy đủ, và tươi mới của của
thông tin.
• Indexer: Thành phần này thực hiện việc lưu trữ nội dung các trang Web theo
cấu trúc chỉ mục ngược đảm bảo việc truy suất nhanh thông tin.
• Query Engine: Thành phần này thực hiện xử lý với các truy vấn của người dùng
rồi chuyển về dạng phù hợp thực hiện cho việc tìm kiếm.
• Ranking: Thành phần này thực hiện việc xếp hạng lại kết quả các trang theo độ
phù hợp với câu truy vấn trước đi khi trình bày tới người dùng.
Mặc dù đã có rất nhiều cải tiến đối với các thuật toán xếp hạng máy tìm kiếm để
thông tin trình bày tới người dùng là phù hợp nhất, nhưng kết quả trả về vẫn là những
trang web bao gồm cả vùng thông tin người dùng quan tâm và các thông tin khác họ
không quan tâm. Do đó, người dùng mất thời gian để duyệt từng trang web tìm ra nội
dung mà họ mong muốn.
Một bất lợi nữa là người dùng rất khó mô tả được trực tiếp những điều họ truy
vấn ngay từ những truy vấn đầu tiên. Vì vậy mà họ cần bổ sung, thay đổi truy vấn theo
một cách nào đó có thể dựa trên các kết quả tìm kiếm lần trước để có được những
thông tin phù hợp với nhu cầu.
Các hệ thống tìm kiếm hiện tại vẫn chủ yếu dựa trên mức từ vựng, chưa có nhiều
đặc trưng về tính hiểu ngữ nghĩa của ngôn ngữ, kết quả tìm kiếm không giống như
người dùng kì vọng đặc biệt là trong các trường hợp từ đồng nghĩa và từ đa nghĩa.
Tìm kiếm hướng thực thể là một trong những hướng đi được quan tâm gần đây
để giải quyết những hạn chế của các hệ thống tìm kiếm thông tin hiện tại, nhằm đem
lại chất lượng khai thác thông tin tốt hơn tới người dùng. Xu hướng này sẽ được trình
bày ở phần tiếp theo của khóa luận.
1.1.2. Hệ thống tìm kiếm thực thể
Rõ ràng với đối tượng trả về là trang Web, mức độ chọn lọc thông tin phù hợp
với yêu cầu người dùng của các máy tìm kiếm vẫn còn ở mức độ chưa cao, và điều
người dùng cần là thông tin về các thực thể chứ không phải là các trang Web.
Ví dụ: bạn Cá muốn tìm kiếm giá, thuộc tính và hình ảnh của điện thoại Nokia
6030, khi đưa truy vấn “Nokia 6030” vào sẽ nhận được kết quả như
sau:
5
Hình 1 - Kết quả tìm kiếm từ Google với truy vấn “nokia 6030”
Trong 10 kết quả đầu trả về bởi máy tìm kiếm Google, thậm chí có trang không
chứa thông tin về các thuộc tính của điện thoại “Nokia 6030”, điều này thật sự không
đáp ứng được kì vọng người dùng.
Các thực thể rất đa dạng từ các tổ chức, người, các sản phẩm, trường học, công
ty....và chúng cũng được phân tán ở nhiều loại trang Web khác nhau như trang tin tức,
trang bán hàng, trang cá nhân, blog….
Khác với các hệ thống tìm kiếm thông thường có đối tượng tìm kiếm là các trang
Web, các hệ thống tìm kiếm thực thể có đối tượng tìm kiếm là các thực thể được trích
chọn ra từ nội dung của một hay nhiều trang Web liên quan. Hệ thống tìm kiếm thực
thể sẽ cung cấp cho người dùng một mức lọc thông tin ở mức cao hơn. Và khi đó đồ
thị Web được nhìn nhận lại dưới dạng đồ thị các thực thể [18]:
Hình 2 - Đồ thị giữa các trang Web dưới góc nhìn thực thể
Sau đây là kiến trúc một hệ thống tìm kiếm thực thể tiêu biểu dựa trên kỹ thuật
trích xuất thông tin [3]
6
Hình 3 - Kiến trúc hệ thống tìm kiếm thực thể tiêu biểu dựa trên kỹ thuật trích xuất thông tin.
Mô hình hệ thống tìm kiếm thực thể bao gồm các bộ phận chính sau:
• Trích xuất thông tin về thực thể: Công việc của bộ phận này là trích xuất ra các
thông tin liên quan đến thực thể này từ tất cả các trang Web chứa loại thực thể.
Ví dụ với thực thể điện thoại thì cần phải trích xuất được giá, nhà sản xuất, hình
ảnh, bản mô tả… của chiếc điện thoại đó. Đây là bài toán không đơn giản vì các
miêu tả theo ngôn ngữ tự nhiên không theo một mẫu nhất định đối với dữ liệu
phi cấu trúc, và bố cục trang Web cũng không giống nhau đối với dữ liệu bán
cấu trúc. Một giải pháp đặt ra là xây dựng bộ phận trích xuât thông tin cho từng
loại trang Web cho dữ liệu bán cấu trúc. Tuy nhiên điều này là rất khó khăn khi
thực hiện bóc tách thông tin trên một số lượng lớn các trang Web.
• Tổng hợp thông tin về thực thể: Sau khi có thông tin về từng thực thể, bộ phận
này phải chịu trách nhiệm tổng hợp lại các thông tin thu thập được ở những lần
khác nhau về cùng thực thể đó. Ví dụ: Với cùng một sản phẩm, trong một trang
Web có giá của nó và trong các trang Web có các chức năng, nếu ta có thể tổng
hợp thông tin về thực thể thì ta sẽ có cái nhìn đầy đủ thông tin về thực thể . Tuy
nhiên điều này gặp phải một số khó khăn như: vấn đề những thực thể khác nhau
dùng cùng một tên và những tên khác nhau cùng trỏ về một thực thể, đặc biệt là
trong vấn đề tìm kiếm người. Phần tiếp theo của khóa luận sẽ trình bày chi tiết
7
các vấn đề liên quan đến bài toán phân biệt nhập nhằng tên người trong tìm
kiếm thực thể người.
Một số hệ thống tìm kiếm thực thể tiêu biểu:
Hệ thống Cazoodle2 do nhóm nghiên cứu của Kevin Chen-Chuan Chang (thuộc
phòng thí nghiệm Cơ sở dữ liệu và Hệ thống thông tin DAIS thuộc trường đại học
Illinois) là một hệ thống tìm kiếm thực thể điển hình, bao gồm các lĩnh vực tìm kiếm
nơi nghỉ mát (Vacation Rental), tìm kiếm căn hộ (Apartment Rentals), và giá cả sản
phẩm (Electronics Shopping)
Hình 4 - Hệ thống tìm kiếm nơi nghỉ mát của Cazoodle
1.1.3. Vấn đề giải quyết nhập nhằng tên trong hệ thống tìm kiếm thực thể
người
Các truy vấn tìm kiếm người chiếm một tỉ lệ cao ( khoảng 10%) trong tìm kiếm
thông tin trên Internet. Theo thống kê những từ khóa được tìm kiếm nhiều nhất năm
2009, thì ở cả 3 máy tìm kiếm là Google, Bing và Yahoo đứng đầu đều là “Michael
JackSon”, và trong top 10 có rất nhiều từ khóa tìm kiếm tên người.
2
8
Hình 5 - Danh sách top 10 từ khóa được tìm kiếm trong Google, Bing và Yahoo năm
2009
Nhưng tên người lại là một trong những loại thực thể có độ nhập nhằng cao nhất.
Ví dụ: khi tìm kiếm tên “Michael JackSon” trong hàng trăm kết quả trả về bởi máy tìm
kiếm Google, bên cạnh ca sỹ nổi tiếng còn có một chuyên gia về bia và một người
buôn súng. Việc phải duyệt từng trang Web để tìm ra người cần là một quá trình tốn
thời gian. Trong một hệ thống lý tưởng, người dùng chỉ cần đưa vào tên người, và kết
quả sẽ được phân cụm, trong đó mỗi cụm bao gồm các tài liệu về cùng một người kèm
theo những mô tả cho cụm đó, điều này giúp cho người dùng tiết kiệm được rất nhiều
thời gian và công sức. Các hệ thống thực thể tìm kiếm hiện tại đang chủ yếu vào tập
trung vào vấn đề trích xuất thuộc tính thực thể, nhưng với tìm kiếm thực thể người thì
vấn đề phân biệt nhập nhằng có ý nghĩa đặc biệt quan trọng. Nếu ta giải quyết được
bài toán này, ta có khả năng tổng hợp, “hàn gắn” các thông tin khác nhau về cùng một
người trong những lần xuất hiện khác nhau, cho ta một cái nhìn đầy đủ toàn diện về
người đó.
Ví dụ nếu người A tham gia sự kiện B,C ở trang P1, A lại tham gia sự kiên D,E
ở trang P2, ta có thể xây dựng được luồng sự kiện hoàn chỉnh nếu 2 tên A đều trỏ tới
một người
9
Hình 1.6 –
Từ những phân tích trên ta thấy rằng, bài toán giải quyết nhập nhằng tên người
trong hệ thống tìm kiếm thực thể quy về vấn đề giải quyết nhập nhằng tên người trên
tập văn bản. Phần tiếp theo của chương này sẽ trình bày chi tiết về bài toán phân biệt
nhập nhằng tên người trên tập văn bản.
1.2. Bài toán phân biệt nhập nhằng tên người trên tập văn bản.
1.2.1. Phát biểu bài toán
Theo Bagga [6], bài toán phân biệt nhập nhằng tên người trên tập văn bản có mục
tiêu là với mỗi tên người cho trước cần phải phân chia tập văn bản chứa tên đó thành
các nhóm, sao cho các văn bản trong cùng một nhóm cùng chỉ đến một người và các
văn bản thuộc các nhóm khác nhau thì chỉ đến những người khác nhau.
Miền dữ liệu của bài toán: Tập các trang Web tin tức từ các tờ báo điện tử của
Việt Nam.
1.2.3. Mối quan hệ với bài toán phân biệt nhập nhằng nghĩa của từ.
Bài toán phân biệt nhập nhằng nghĩa của từ (Word Sense Disambiguation -
WSD) là bài toán có ý nghĩa quan trọng trong lĩnh vực xử lý ngôn ngữ tự nhiên, dành
được sự quan tâm nghiên cứu của các nhà khoa học từ rất lâu. Với hầu hết các ngôn
ngữ, luôn tồn tại một tập các từ có nhiều hơn một nghĩa, mà nghĩa của từ chỉ có thể
A
B C
A
D E
A
D E
B C
P2 P1
Hình 6 - Tổng hợp thông tin về người A từ 2 trang P1 và P2
10
xác định dựa trên ngữ cảnh xuất hiện của nó. Mục tiêu của bài toán là xác định nghĩa
của một từ trong một văn bản cho trước, kết quả của bài toán này đóng vai trò quan
trọng để thực hiện các bài toán quan trọng tiếp theo trong lĩnh vực xử lý ngôn ngữ tự
nhiên như dịch máy, tóm tắt văn bản…Các hướng nghiên cứu giải quyết vấn đề này rất
đa dạng bao gồm học giám sát (supervised learning), học bán giám sát (semi-
supervised learning) và học không giám sát (unsupervised learning)...
Bài toán phân biệt nhập nhằng tên và nhập nhằng nghĩa đều có mục đích là giải
quyết nhập nhằng trong xử lý ngôn ngữ tự nhiên. Tuy nhiên bài toán WSD giải quyết
với một lớp rộng các
Các file đính kèm theo tài liệu này:
- K51_Nguyen_Dao_Thai_Thesis.pdf