Luận văn Điều tra đánh giá tiềm năng và khả năng đóng góp của các nguồn năng lượng mới và truyền thống trên địa bàn tỉnh thái nguyên vào lưới điện của tỉnh

Bước sang thế kỷ 21, cùng với nhịp độ phát triển kinh tế - xã hội ngày một

gia tăng trong khuôn khổ của nguồn tài nguyên bị hạn chế, loài người đang đứng

trước nguy cơ cạn kiệt của các nguồn tài nguyên năng lượng cổ điển và phải đương

đầu với vấn đề ô mhiễm môi trường sống đã ở mức báo động trong phạm vi toàn

cầu gây ra bởi lượng khí thải độc hại trong quá trình sử dụng năng lượng.

Vì vậy, việc tìm kiếm các nguồn năng lượng bổ sung và nghiên cứu sử dụng

các nguồn năng lượng mới và tái tạo đang được các quốc gia trên toàn thế giới quan

tâm. Năng lượng mới và tái tạo là những nguồn năng lượng sạch, có trữ lượng to

lớn và có khả năng tái tạo hầu như vô tận.

Việt Nam nói chung và Thái Nguyên nói riêng nhu cầu sử dụng năng lượng

ngày càng tăng, nguồn năng lượng truyền thống dần dần không đáp ứng đủ nhu cầu

sử dụng năng lượng cho con người. Do vậy, việc điều tra, đánh giá tiềm năng và

khả năng đóng góp của các nguồn năng lượng mới và tái tạo là vấn đề cấp bách và

cần thiết.

Đề tài tốt nghiệp “Điều tra, đánh giá tiềm năng và khả năng đóng góp của

các nguồn NLM & TT trên địa bàn tỉnh Thái Nguyên vào lưới điện của Tỉnh” được

nghiên cứu với mục đích góp phần vào chiến lược phát triển năng lượng chung của

Tỉnh và cả nước, hiện tại nguồn năng lượng này có thể đáp ứng nhu cầu sử dụng

điện cho những vùng miền núi xa xôi, hẻo lánh, những nơi chưa có điện lưới quốc

gia của Thái Nguyên, phục vụ cho việc phát triển kinh tế, xã hội, xoá đói, giảm

nghèo.Trong tương lai, nó có thể dần thay thế các nguồn năng lượng điện hiện nay.

Khi nghiên cứu đề tài này, tôi đã có được các tài liệu liên quan hiện có về các

nguồn năng lượng mới và tái tạo ở Việt Nam và Thái Nguyên. Tuy nhiên, đây là

một lĩnh vực hoàn toàn mới do vậy các tài liệu còn rất hạn chế và các số liệu chưa

đầy đủ, có sự sai lệch số liệu từ các nguồn khác nhau ( các bài báo, dự án, tạp chí,

quy hoạch phát triển.), không phải tất cả các số liệu sử dụng đều cập nhật.

Trong quá trình nghiên cứu đề tài, tôi đã nhận được sự hướng dẫn, giúp đỡ

tận tình của PGS.TS Đặng Đình Thống – Giám đốc trung tâm năng lượng mới

Trường ĐH Bách Khoa Hà Nội, các sở Điện lực, Công nghiệp, Nông nghiệp, Tài

nguyên môi trường.cùng bạn bè, đồng nghiệp.

Tôi xin trân trọng cảm ơn!

pdf102 trang | Chia sẻ: oanh_nt | Lượt xem: 1179 | Lượt tải: 1download
Bạn đang xem trước 20 trang nội dung tài liệu Luận văn Điều tra đánh giá tiềm năng và khả năng đóng góp của các nguồn năng lượng mới và truyền thống trên địa bàn tỉnh thái nguyên vào lưới điện của tỉnh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP --------------------------------------- LUẬN VĂN THẠC SĨ KỸ THUẬT ĐIỀU TRA ĐÁNH GIÁ TIỀM NĂNG VÀ KHẢ NĂNG ĐÓNG GÓP CỦA CÁC NGUỒN NLM&TT TRÊN ĐỊA BÀN TỈNH THÁI NGUYÊN VÀO LƯỚI ĐIỆN CỦA TỈNH Ngành : THIẾT BỊ MẠNG – NHÀ MÁY ĐIỆN Mã số:23.0 Học Viên: HÀ THỊ NINH Người HD Khoa học : PGS.TS. ĐẶNG ĐÌNH THỐNG Khoa đào tạo SĐH Người HD khoa học Đặng Đình Thống Học viên Hà Thị Ninh THÁI NGUYÊN - 2008 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên MỤC LỤC Nội dung Trang LỜI NÓI ĐẦU 1 CHƢƠNG 1. CÁC NGUỒN VÀ CÁC CÔNG NGHỆ NĂNG LƢỢNG MỚI VÀ TÁI TẠO 3 1.1. CÁC NGUỒN NĂNG LƢỢNG MỚI VÀ TÁI TẠO VÀ CÁC ĐẶC TÍNH CỦA CHÚNG 3 1.1.1. Các nguồn năng lƣợng mới và tái tạo 3 1.1.2. Các đặc tính của các nguồn năng lƣợng mới và tái tạo 6 1.2. CÁC CÔNG NGHỆ NĂNG LƢỢNG MỚI VÀ TÁI TẠO VÀ CÁC ĐẶC TRƢNG CỦA CHÚNG 7 1.2.1. Công nghệ điện năng lƣợng mặt trời (NLMT) 7 1.2.2. Công nghệ thuỷ điện nhỏ (TĐN) 11 1.2.3. Công nghệ điện gió 12 1.2.4. Phát điện từ sinh khối 14 1.2.5. Công nghệ địa nhiệt và điện địa nhiệt 15 1.2.6. Phát điện từ nguồn năng lƣợng đại dƣơng 16 1.3. TÌNH HÌNH NGHIÊN CỨU ỨNG DỤNG CÁC NGUỒN ĐIỆN TỪ NLM & TT 18 1.3.1. Trên thế giới 18 1.3.2. Tại Việt Nam 20 CHƢƠNG 2. TIỀM NĂNG VÀ KHẢ NĂNG KHAI THÁC NĂNG LƢỢNG MỚI VÀ TÁI TẠO Ở THÁI NGUYÊN 24 2.1. ĐẶC ĐIỂM TỰ NHIÊN – XÃ HỘI 24 2.1.1. Vị trí địa lý. 24 2.1.2. Dân số 24 2.1.3. Địa hình – Khí hậu 26 2.1.4. Tài nguyên 26 2.2. HIỆN TRẠNG VÀ DỰ BÁO NHU CẦU ĐIỆN 28 2.2.1. Hiện trạng phụ tải 28 2.2.2.Dự báo nhu cầu điện 29 2.2.3.Các nguồn cung cấp điện năng 35 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2.3. TIỀM NĂNG VÀ KHẢ NĂNG KHAI THÁC NĂNG LƢỢNG MỚI VÀ TÁI TẠO Ở THÁI NGUYÊN 36 2.3.1. Vai trò của năng lƣợng mới và tái tạo 36 2.3.2. Các nguồn năng lƣợng mới và tái tạo ở Thái Nguyên. 38 2.3.3. Năng lƣợng thuỷ điện nhỏ. 38 2.3.4.Năng lƣợng sinh khối 45 2.3.5. Năng lƣợng mặt trời 50 2.4. HIỆN TRẠNG NGHIÊN CỨU, ỨNG DỤNG 54 CHƢƠNG 3. PHÂN TÍCH LỰA CHỌN CÁC CÔNG NGHỆ PHÁT ĐIỆN NĂNG LƢỢNG MỚI VÀ TÁI TẠO 58 3.1. CÁC TIÊU CHÍ LỰA CHỌN 58 3.2. CÁC CÔNG NGHỆ ĐƢỢC ĐỀ NGHỊ 58 3.2.1. Năng lƣợng thuỷ điện nhỏ 59 3.2.2. Năng lƣợng sinh khối để phát điện 63 3.2.3. Năng lƣợng mặt trời 67 CHƢƠNG 4. ĐÁNH GIÁ TÁC ĐỘNG MÔI TRƢỜNG 79 4.1. TÁC ĐỘNG TỚI MÔI TRƢỜNG TỰ NHIÊN 79 4.2. TÁC ĐỘNG TỚI ĐIỀU KIỆN KINH TẾ - XÃ HỘI 81 KẾT LUẬN VÀ KIẾN NGHỊ 82 TÀI LIỆU THAM KHẢO 84 PHỤ LỤC 85 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 LỜI NÓI ĐẦU Bước sang thế kỷ 21, cùng với nhịp độ phát triển kinh tế - xã hội ngày một gia tăng trong khuôn khổ của nguồn tài nguyên bị hạn chế, loài người đang đứng trước nguy cơ cạn kiệt của các nguồn tài nguyên năng lượng cổ điển và phải đương đầu với vấn đề ô mhiễm môi trường sống đã ở mức báo động trong phạm vi toàn cầu gây ra bởi lượng khí thải độc hại trong quá trình sử dụng năng lượng. Vì vậy, việc tìm kiếm các nguồn năng lượng bổ sung và nghiên cứu sử dụng các nguồn năng lượng mới và tái tạo đang được các quốc gia trên toàn thế giới quan tâm. Năng lượng mới và tái tạo là những nguồn năng lượng sạch, có trữ lượng to lớn và có khả năng tái tạo hầu như vô tận. Việt Nam nói chung và Thái Nguyên nói riêng nhu cầu sử dụng năng lượng ngày càng tăng, nguồn năng lượng truyền thống dần dần không đáp ứng đủ nhu cầu sử dụng năng lượng cho con người. Do vậy, việc điều tra, đánh giá tiềm năng và khả năng đóng góp của các nguồn năng lượng mới và tái tạo là vấn đề cấp bách và cần thiết. Đề tài tốt nghiệp “Điều tra, đánh giá tiềm năng và khả năng đóng góp của các nguồn NLM & TT trên địa bàn tỉnh Thái Nguyên vào lưới điện của Tỉnh” được nghiên cứu với mục đích góp phần vào chiến lược phát triển năng lượng chung của Tỉnh và cả nước, hiện tại nguồn năng lượng này có thể đáp ứng nhu cầu sử dụng điện cho những vùng miền núi xa xôi, hẻo lánh, những nơi chưa có điện lưới quốc gia của Thái Nguyên, phục vụ cho việc phát triển kinh tế, xã hội, xoá đói, giảm nghèo...Trong tương lai, nó có thể dần thay thế các nguồn năng lượng điện hiện nay. Khi nghiên cứu đề tài này, tôi đã có được các tài liệu liên quan hiện có về các nguồn năng lượng mới và tái tạo ở Việt Nam và Thái Nguyên. Tuy nhiên, đây là một lĩnh vực hoàn toàn mới do vậy các tài liệu còn rất hạn chế và các số liệu chưa đầy đủ, có sự sai lệch số liệu từ các nguồn khác nhau ( các bài báo, dự án, tạp chí, quy hoạch phát triển...), không phải tất cả các số liệu sử dụng đều cập nhật. Trong quá trình nghiên cứu đề tài, tôi đã nhận được sự hướng dẫn, giúp đỡ tận tình của PGS.TS Đặng Đình Thống – Giám đốc trung tâm năng lượng mới Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 Trường ĐH Bách Khoa Hà Nội, các sở Điện lực, Công nghiệp, Nông nghiệp, Tài nguyên môi trường...cùng bạn bè, đồng nghiệp. Tôi xin trân trọng cảm ơn! Thái Nguyên, ngày 20 tháng 5 năm 2008 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 CHƢƠNG 1 CÁC NGUỒN VÀ CÁC CÔNG NGHỆ NĂNG LƢỢNG MỚI VÀ TÁI TẠO 1.1. CÁC NGUỒN NĂNG LƢỢNG MỚI VÀ TÁI TẠO VÀ CÁC ĐẶC TÍNH CỦA CHÚNG 1.1.1. Các nguồn năng lƣợng mới và tái tạo 1.1.1.1 Năng lƣợng mặt trời. Đây là nguồn năng lượng vô cùng quan trọng đối với sự tồn tại và phát triển của sự sống trên trái đất. Đồng thời nó cũng là nguồn gốc của các dạng năng lượng tái tạo khác như năng lượng gió, năng lượng sinh khối, năng lượng các dòng sông...Năng lượng mặt trời có thể nói là vô tận. Tuy nhiên để khai thác sử dụng nguồn năng lượng này cần phải biết các đặc trưng và tính chất cơ bản của nó đặc biệt khi tới bề mặt quả đất. 1.1.1.2. Năng lƣợng gió Năng lượng gió là một dạng chuyển tiếp của năng lượng mặt trời, bởi chính ánh nắng ban ngày đã đun nóng bầu khí quyển, tạo nên tình trạng chênh lệch nhiệt độ và áp suất giữa nhiều vùng khác nhau, và các khối không khí từ những khu vực có áp suất cao sẽ dịch chuyển nhanh đến những vùng có áp suất thấp hơn, tạo ra hiện tượng gió thổi đều khắp trên bề mặt địa cầu. Năng lượng gió được đánh giá là thân thiện nhất với môi trường và ít gây ảnh hưởng xấu về mặt xã hội. 1.1.1.3. Năng lƣợng thuỷ điện nhỏ. Theo đánh giá chung về thủy điện nhỏ thì rất lớn, đặc biệt là ở những khu vực miền núi nơi tập trung rất nhiều sông suối nhỏ, mặt khác đây là nguồn năng lượng có giá thành rẻ nên cần có chính sách khai thác và sử dụng hiệu quả. Từ các con sông, suối chảy từ nguồn xuống biển đều mang theo một tiềm năng về năng lượng (gọi là thuỷ năng). Thông thường nguồn thuỷ năng phụ thuộc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 vào độ dốc sông suối và lưu lượng nước chảy qua. Nguồn thuỷ năng có thể phân bố đều hoặc không đều trên một đoạn sông suối. Để tập trung năng lượng của dòng chảy, nghĩa là để tạo được độ chênh lệch mực nước giữa thượng lưu và hạ lưu người ta sử dụng một số phương pháp kiểu trạm thuỷ điện như: Phương pháp tập trung năng lượng bằng đập ngăn, phương pháp tập trung năng lượng bằng đường dẫn và phương pháp tổng hợp tập trung năng lượng dòng chảy. 1.1.1.4. Năng lƣợng sinh khối. Sinh khối bao gồm các loài thực vật sinh trưởng và phát triển trên cạn cũng như ở dưới nước, các phế thải hữu cơ như: rơm rạ, vỏ trấu, bã mía, vỏ cà phê..., các loại phế thải động vật như: phân người, phân gia súc, gia cầm.... Sinh khối là nguồn năng lượng đầu tiên của loài người và mặc dù ngày nay các nguồn năng lượng hoá thạch như: than đá, dầu mỏ, khí đốt là các nguồn năng lượng chính nhưng sinh khối vẫn còn được sử dụng với một khối lượng và tỉ lệ khá lớn, nhất là ở các nước đang phát triển. Sinh khối là một nguồn năng lượng có khả năng tái sinh. Nó tồn tại và phát triển được trên hành tinh chúng ta là nhờ có ánh sáng mặt trời. Các loài thực vật hấp thụ ánh sáng mặt trời để thực hiện các phản ứng quang hợp, biến đổi các khoáng chất, nước và các nguyên tố vô cơ khác thành các chất hữu cơ. Trong quá trình quang hợp, thực vật còn hấp thụ khí cacbonic và tạo ra oxy là chất khí tạo ra sự sống trên quả đất này. Các tính toán cho thấy rằng, hàng năm thực vật hấp thụ 0,1% tổng năng lượng bức xạ mặt trời tới quả đất, và nhờ phản ứng quang hợp, tạo ra 2x10 11 tấn chất hữu cơ và cho một nguồn năng lượng rất lớn, khoảng 3x1012J. Phần lớn các nước đang phát triển, trong đó có Việt Nam ta, được thiên nhiên ban tặng cho nguồn tài nguyên năng lượng mặt trời rất dồi dào. Ở các nước này mật độ năng lượng mặt trời khá cao, nằm trong khoảng từ 4 đến 7KWh/m 2.ngày, là điều kiện rất thuận lợi cho thực vật phát triển. Phản ứng quang hợp còn là phản ứng cơ bản tạo ra thức ăn cho động vật. Nếu kể đến cả sản phẩm oxy của phản ứng quang hợp ta có thể nói rằng sinh khối Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 nói chung và thực vật nói riêng có ý nghĩa quyết định đối với sự sống trên hành tinh chúng ta. Năng lượng sinh khối hoàn toàn có thể thay thế các nguồn năng lượng hoá thạch đang bị khai thác cạn kiệt và gây ra ô nhiễm môi trường nặng nề 1.1.1.5. Năng lƣợng địa nhiệt. Địa nhiệt là nguồn năng lượng tự nhiên ở trong lòng quả đất, dưới lớp vỏ không dày lắm của quả đất, nhiệt độ lên đến 10000C đến hơn 40000C, ở một số khu vực áp suất cũng rất lớn, vượt quá 130MPa. Còn ở lớp trên cùng của vỏ Trái đất chỉ có nhiệt độ bình quân trong năm là 150C, dưới lớp đó là một lớp có nhiệt độ bình quân là 540 0C, còn tại lớp lõi trong nhiệt độ bình quân là 70000C. Khối năng lượng khổng lồ đó tồn tại đồng hành với Trái đất và là nguồn năng lượng vô hạn sinh ra từ các chuỗi phản ứng hạt nhân, sự phân hủy các chất phóng xạ tiến hành thường xuyên trong lòng Trái đất như Thori (Th), Protactini (Pa), Urani (U)...vv, năng lượng do các phản ứng phóng xạ được tích tụ trong lòng quả đất hàng triệu năm với một lượng khổng lồ làm nóng chảy lõi quả đất dưới áp suất cao. Đi sâu xuống lòng đất 2-40m (tùy địa điểm) ta sẽ gặp tầng Thường ôn, tức là tầng có nhiệt độ không chịu ảnh hưởng của nhiệt độ Mặt Trời. Dưới tầng Thường ôn càng xuống sâu nhiệt độ càng tăng. Người ta gọi địa nhiệt cấp là độ sâu tính bằng mét đủ để nhiệt độ tăng lên 1 0C. Trị số trung bình là 33m. Nếu xuống sâu được đến 60km thì có nhiệt độ tới 1800 0C. Thường thường để khai thác nguồn năng lượng địa nhiệt người ta chỉ cần khoan các giếng sâu 4-5km là tới vùng có nhiệt độ khoảng 2000C. Nước được làm sôi lên sẽ theo ống dẫn lên và có thể làm chạy các máy phát điện...vv. Theo đánh giá của các chuyên gia, có khoảng 10% diện tích vỏ quả đất có chữa các nguồn địa nhiệt có thể đánh giá được tiềm năng của nó. Các nguồn này có thể cung cấp cho nhân loại một nguồn năng lượng rất lớn. 1.1.1.6. Năng lƣợng đại dƣơng. Tiềm năng năng lượng của các đại dương chứa trong sóng và thuỷ triều cũng như trong sự chênh lệch nhiệt độ giữa lớp nước nóng trên bề mặt và các lớp nước Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 lạnh ở dưới đáy các đại dương là vô cùng to lớn. Gió thổi trên một khoảng không gian bao la trên các đại dương sẽ tạo ra sóng biển dữ dội, liên tục và mang theo một nguồn năng lượng có thể nói là vô tận. Thuỷ triều là kết quả giữa lực hút của mặt trời, mặt trăng với quả đất và do sự chuyển động của quả đất xung quanh mặt trời, cũng như sự quay xung quanh trục nghiêng của quả đất. Ở một số khu vực trên thế giới, mức nước biển dâng lên và hạ xuống trên 12m hai lần trong một ngày. Đại dương còn là một bộ thu năng lượng khổng lồ, hấp thụ năng lượng mặt trời dưới dạng nhiệt năng làm nóng lớp nước ở bề mặt và tạo ra sự chênh lệch nhiệt độ giữa lớp nước nóng ở bề mặt và nước lạnh dưới sâu. 1.1.2. Các đặc tính của các nguồn năng lƣợng mới và tái tạo 1.1.2.1. Đặc tính phong phú và có thể tái sinh: Có thể nói các nguồn năng lượng mới và tái tạo (NLM & TT) rất phong phú và có sẵn do thiên nhiên ban tặng cho chúng ta, không những thế hầu hết các nguồn năng lượng này đều có thể tái tạo được. Về nguồn mà nói thì năng lượng mặt trời hết sức dồi dào, rồi gió, năng lượng thủy điện nhỏ, năng lượng sinh khối, năng lượng thủy triều, sóng biển, địa nhiệt cũng có trữ lượng khá lớn nếu không muốn nói là khó có thể cạn kiệt được. Tiềm năng của năng lượng tái tạo hay năng lượng tái sinh là năng lượng từ những nguồn liên tục mà theo chuẩn mực của con người là vô hạn. Vô hạn có hai nghĩa: Hoặc là năng lượng tồn tại nhiều đến mức mà không thể trở thành cạn kiệt vì sự sử dụng của con người (thí dụ như năng lượng Mặt Trời) hoặc là năng lượng tự tái tạo trong thời gian ngắn và liên tục (thí dụ như năng lượng sinh khối) trong các quy trình còn diễn tiến trong một thời gian dài trên Trái Đất. Ngược lại với việc sử dụng các quy trình này là việc khai thác các nguồn năng lượng như than đá hay dầu mỏ, những nguồn năng lượng truyền thống mà ngày nay được tiêu dùng nhanh hơn là được tạo ra rất nhiều. Theo ý nghĩa của định nghĩa tồn tại "vô tận" thì phản ứng tổng hợp hạt nhân (phản ứng nhiệt hạch), khi có thể thực hiện trên bình diện kỹ thuật, và phản ứng phân rã hạt nhân (phản ứng phân hạch) với các lò phản ứng tái sinh, khi năng lượng hao tốn lúc khai thác uranium hay Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 thorium có thể được giữ ở mức thấp, đều là những nguồn năng lượng tái tạo mặc dù là thường thì chúng không được tính vào loại năng lượng này. 1.1.2.2. Nguồn năng lượng sạch và không gây ô nhiễm môi trường Tất cả các nguồn NLM & TT đều sạch nên việc sử dụng các nguồn năng lượng này sẽ mang lại nhiều lợi ích về sinh thái cũng như là lợi ích gián tiếp cho kinh tế. So sánh với các nguồn năng lượng truyền thống như: Than đá, hoá thạch hay thuỷ điện, năng lượng tái tạo có nhiều ưu điểm hơn vì tránh được các hậu quả có hại đến môi trường. Năng lượng gió được đánh giá là thân thiện nhất với môi trường và ít gây ảnh hưởng xấu về mặt xã hội. Để xây dựng một nhà máy thủy điện lớn cần phải nghiên cứu kỹ lưỡng các rủi ro có thể xảy ra với đập nước. Ngoài ra, việc di dân cũng như việc mất các vùng đất canh tác truyền thống sẽ đặt gánh nặng lên vai những người dân xung quanh khu vực đặt nhà máy, và đây cũng là bài toán khó đối với các nhà hoạch định chính sách. Hơn nữa, các khu vực để có thể quy hoạch các đập nước tại Việt Nam cũng không còn nhiều. Song hành với các nhà máy điện hạt nhân là nguy cơ gây ảnh hưởng lâu dài đến cuộc sống của người dân xung quanh nhà máy. Các bài học về rò rỉ hạt nhân cộng thêm chi phí đầu tư cho công nghệ, kĩ thuật quá lớn khiến càng ngày càng có nhiều sự ngần ngại khi sử dụng loại năng lượng này. Các nhà máy điện chạy nhiên liệu hóa thạch thì luôn là những thủ phạm gây ô nhiễm nặng nề, ảnh hưởng xấu đến môi trường và sức khỏe người dân. Hơn thế nguồn nhiên liệu này kém ổn định và giá có xu thế ngày một tăng cao. Theo báo cáo từ Tổ chức Hoà Bình Xanh và Hội đồng Năng lượng Tái tạo châu Âu việc đầu tư vào năng lượng xanh tới năm 2030 sẽ giảm một nửa lượng phát thải CO2. Bản báo cáo này cung cấp một luận cứ kinh tế về sự luân chuyển các khoản đầu tư toàn cầu sang năng lượng mặt trời, năng lượng gió, thuỷ điện, địa nhiệt và năng lượng sinh khối trong hơn nửa thế kỷ tới. 1.2. CÁC CÔNG NGHỆ NĂNG LƢỢNG MỚI VÀ TÁI TẠO VÀ CÁC ĐẶC TRƢNG CỦA CHÚNG 1.2.1. Công nghệ điện năng lƣợng mặt trời (NLMT) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 Có thể xem mặt trời là một quả cầu cách quả đất 150 triệu km. Đường kính mặt trời 1,39 triệu km, lớn hơn 109 lần đường kính quả đất, áp suất ở phần trong mặt trời rất cao, cao hơn áp suất khí quyển ở quả đất khoảng chục triệu lần. Nhiệt độ trên mặt trời biến đổi từ hơn 15 triệu độ ở trong lõi tới 6 000 độ ở mặt ngoài của nó. Khí quyển mặt trời chứa khoảng 78,4% khí Hydro (H2), 19,8% Heli (He), các nguyên tố kim loại và các nguyên tố khác chỉ chiếm 1,8%. Các điều kiện về áp suất, nhiệt độ và thành phần khí quyển trên mặt trời là điều kiện lý tưởng cho phản ứng nhiệt hạt nhân và tạo ra nguồn năng lượng khổng lồ. Mỗi giây nó phát ra năng lượng tương đương với năng lượng đốt cháy hết 1,32.1016 tấn than đá. Tuy nhiên bề mặt quả đất chỉ nhận được 17,57.1016 W, tương đương năng lượng đốt cháy hết 6 triệu tấn than đá. NLMT rất lớn, nhưng phân bố lại mỏng, chỉ khoảng 800-1000W/m2 nên việc khai thác khá khó khăn. Bản chất bức xạ mặt trời (BXMT) là sóng điện từ có phổ bước sóng rất rộng, từ hàng km đến phần tỷ m. ánh sáng nhìn thấy có bước sóng từ 0.4 đến 0,7 m, chỉ chiếm một phần rất nhỏ phổ BXMT (hình 1.1). Hình 1.1. Phổ BXMT Tuy nhiên khi BXMT xuyên qua lớp khí quyển tới bề mặt quả đất, do các phân tử khí, hơi nước, các hạt bụi,… làm tán xạ, hấp thụ, nên phổ và cường độ BXMT trên mặt đất bị giảm đi rất đáng kể. 1.2.1.1. Công nghệ nhiệt mặt trời (NMT) 10 -10 10 -8 10 -6 10 10 10 -4 10 -2 10 0 10 2 10 4 10 6 10 8 10 12 10 14 Tia vũ trụ Tia Rơnghen Tia tử ngoại Tia nhìn thấy Tia hồng ngoại Sóng ngắn Sóng vô tuyến điện ( ) m) Tia Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 a. Hiệu ứng nhà kính Hiệu ứng nhà kính là một trong những hiệu ứng quan trọng nhất được ứng dụng để khai thác năng lượng mặt trời. Nguyên lý hoạt động như sau: Các loại kính xây dựng cho các tia BXMT có bước sóng truyền qua một cách dễ dàng, trong khi đó các bức xạ có > 0,7 m (các tia này còn được gọi là tia nhiệt) thì bị kính phản xạ trở lại. Trước hết ta khảo sát một hộp thu nhiệt mặt trời như hình 1.2. Mặt trên hộp được đậy bằng tấm kính (1). Thành xung quanh và đáy hộp có lớp vật liệu cách nhiệt dày (2). Đáy trong của hộp được làm bằng tấm kim loại dẫn nhiệt tốt, mặt trên của nó phủ một lớp sơn đen, hấp thụ nhiệt tốt và được gọi là tấm hấp thụ (3). Hình 1.2. Sơ đồ hộp thu NLMT theo nguyên lý hiệu ứng nhà kính Các tia bức xạ mặt trời (BXMT) có bước sóng < 0,7 m tới mặt hộp thu, đi qua tấm kính phủ phía trên (1), tới bề mặt tấm hấp thụ (3). Tấm này hấp thụ năng lượng BXMT và chuyển hoá thành nhiệt làm cho tấm hấp thụ nóng lên, khi đó nó trở thành nguồn phát xạ thứ cấp phát ra các tia bức xạ nhiệt có bước sóng m7,0 , hướng về mọi phía. Các tia đi lên phía trên bị tấm kính ngăn lại, không ra ngoài được. Nhờ vậy, hộp thu liên tục nhận BXMT nên tấm hấp thụ được nung nóng dần lên và có thể đạt đến nhiệt độ hàng trăm độ. Như vậy năng lượng nhiệt mặt trời bị "giam" trong hộp, giống như một cái bẫy nhiệt - năng lượng vào được nhưng không thể ra được. Đó là nguyên lý “hiệu ứng nhà kính”. Nhiệt độ của tấm hấp thụ càng cao, phát xạ nhiệt từ mặt hấp thụ càng lớn, cho đến khi năng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 lượng mà tấm hấp thụ nhận được từ BXMT cân bằng với năng lượng mất mát cho môi trường xung quanh thì trạng thái cân bằng nhiệt được thiết lập. b. Bộ thu phẳng Bộ thu phẳng có cấu tạo dựa trên nguyên lý hiệu ứng nhà kính như đã mô tả trên, nhưng tuỳ thuộc vào mục đích sử dụng nhiệt khác nhau phần thu nhiệt có thể có các dạng kết cấu khác nhau. Bộ thu Năng lượng mặt trời (NLMT) có thể được ứng dụng trong nhiều mục đích khác nhau như để sản xuất nước nóng, sấy nông hải sản phẩm, chưng cất nước, sưởi ấm nhà cửa v.v…Nó có thể có nhiều hình dạng khác nhau được thiết kế cho phù hợp với mục đích sử dụng. 1.2.1.2. Công nghệ điện mặt trời (ĐMT) Hiện nay có hai công nghệ để sản xuất điện bằng NLMT. Đó là công nghệ Nhiệt điện mặt trời và công nghệ Pin mặt trời (hay pin quang điện). Trong công nghệ thứ nhất, năng lượng mặt trời được hội tụ nhờ các hệ thống gương hội tụ như máng parabol, đĩa parabol, gương cầu...để tập trung ánh sáng mặt trời thành các nguồn nhiệt có mật độ năng lượng và do đó có nhiệt độ rất cao, có thể làm bốc hơi nước ở nhiệt độ và áp suất lớn và sau đó hơi làm quay các Tuabin để sản xuất ra điện năng. Còn trong công nghệ pin mặt trời, năng lượng mặt trời được biến đổi trực tiếp thành điện năng nhờ các tế bào quang điện bán dẫn được chế tạo từ các vật liệu bán dẫn điện. Các pin mặt trời sản xuất ra điện năng một cách liên tục chừng nào còn bức xạ mặt trời tới nó. Các hệ thống pin mặt trời rất đơn giản, không có phần chuyển động, không đòi hỏi phải bảo dưỡng chăm sóc thường xuyên như các hệ thống năng lượng khác, nên các hệ thống rất được quan tâm nghiên cứu, phát triển và ứng dụng. Ngay từ năm 1950 các pin mặt trời đã trở thành nguồn điện rất tin cậy cho các vệ tinh nhân tạo và hiện nay là các tàu vũ trụ. Đặc biệt từ cuộc khủng hoảng dầu lửa năm 1973, các hoạt động nghiên cứu hoàn thiện công nghệ pin mặt trời đã phát triển mạnh mẽ. Hiện nay sản xuất pin mặt trời đã trở thành một trong các ngành công nghiệp quan trọng ở nhiều nước công nghiệp phát triển trên thế giới. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 1.2.2. Công nghệ thuỷ điện nhỏ (TĐN) 1.2.2.1. Công nghệ thuỷ năng và các đặc điểm Các con sông, suối chảy từ nguồn xuống biển đều mang theo một tiềm năng về năng lượng (gọi là thuỷ năng). Thông thường các nguồn thuỷ năng phụ thuộc vào độ dốc sông suối và lưu lượng nước chảy qua. Nguồn thuỷ năng có thể phân bố đều hoặc không đều trên một đoạn sông suối. Để tập trung năng lượng của dòng chảy, nghĩa là để tạo được độ chênh mực nước giữa thượng lưu (TL) và hạ lưu (HL) người ta sử dụng ba phương pháp ứng với ba kiểu trạm thuỷ điện sau đây: a. Phương pháp tập trung năng lượng bằng đập ngăn Phương pháp này là đắp đập tạo nên độ chênh mực nước giữa TL và HL. Đập có nhiều loại: đập đất, đập đá và đập bêtông. Còn trạm thuỷ điện có thể bố trí sau đập hay trong lòng đập. Trạm thuỷ điện này gọi là trạm thuỷ điện sau đập hay trạm thuỷ điện trong lòng đập. Vì độ cao đập hạn chế nên phương pháp này được sử dụng chỉ cho các đoạn sông suối có độ dốc nhỏ. Cột nước toàn phần của trạm thuỷ điện được xác định bằng hiệu mực nước TL và HL. b. Phương pháp tập trung năng lượng bằng đường dẫn Phương pháp này sử dụng đường dẫn để tạo độ chênh mực nước giữa thượng lưu và hạ lưu. Trạm thuỷ điện này gọi là trạm thuỷ điện đường dẫn. Đường dẫn có thể bằng đường ống hoặc kênh dẫn. Trạm thuỷ điện dạng này thích hợp với các con sông, suối có độ dốc lớn hay có bậc thác. c. Phương pháp tổng hợp tập trung năng lượng dòng chảy Phương pháp này tạo độ chênh mực nước bằng đập ngăn và bằng đường dẫn đối với đoạn sông có độ dốc khác nhau. Độ chênh mực nước của trạm bằng tổng độ chênh mực nước đập tạo nên và độ chênh của đường dẫn. Trạm thuỷ điện dạng này gọi là trạm thuỷ điện tổng hợp. Cột áp toàn phần được xác định bằng tổng cột áp do đập và đường dẫn tạo nên. 1.2.2.2. Các ứng dụng Đối với một trạm thuỷ điện nhỏ quan trọng nhất là phương pháp xác định kích thước tuabin. Tuabin nước được sử dụng chủ yếu để kéo máy phát điện nhằm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 cung cấp điện cho các hộ sử dụng. Ở các vùng miền núi, tuabin nước còn được sử dụng để làm quay trực tiếp máy bơm cấp nước sinh hoạt và tưới cây. Ngoài ra tuabin nước còn được sử dụng để chạy các máy công cụ khác: Máy gia công cơ khí, máy xay xát, ...vv. a. Tuabin nước chạy máy phát điện Tuabin được nối trực tiếp với máy phát điện hoặc gián tiếp thông qua các bộ truyền động. Công suất của máy phát điện sẽ được xác định theo công suất của tuabin, còn vòng quay của máy phát được chọn theo số vòng quay đồng bộ. * Tuabin kéo trực tiếp máy phát Loại này có số vòng quay của tuabin bằng số vòng quay của máy phát * Tuabin kéo máy phát qua bộ truyền Loại này thì số vòng quay của tuabin thường nhỏ hơn vòng quay của máy phát và được xác xác định theo tỷ số truyền của bộ truyền đai hay hộp số cơ khí. b. Tuabin kéo bơm Để phục vụ cho việc cung cấp nước sinh hoạt và nước tưới cho vùng sâu, vùng xa, nơi có nguồn thuỷ năng nhỏ, người ta sử dụng tuabin để trực tiếp kéo bơm. Tổ hợp như vậy gọi là bơm thuỷ luân. Tuabin kéo bơm có hai loại: Buồng hở và buồng kín * Tuabin buồng hở cột nước thấp 0,4 đến 4m, cột áp bơm đạt 2 đến 24m. Loại này thường là tuabin hướng trục, được nối trực tiếp với máy bơm. Máy bơm được sử dụng có thể là bơm ly tâm một cấp hay nhiều cấp * Tuabin buồng kín cột nước tuabin từ 2m trở lên, cột áp bơm từ 7m đến hàng trăm mét. Loại này có thể nối trực tiếp hay gián tiếp với máy bơm qua bộ truyền đai hay hộp số. Bơm sử dụng có thể là bơm một cấp hay nhiều cấp, bơm thường có lưu lượng nhỏ và cột áp cao, có thể sử dụng bơm xoáy hay bơm ly tâm, trường hợp bơm nước sạch cho sinh hoạt có thể dùng bơm piston. 1.2.3. Công nghệ điện gió 1.2.3.1. Năng lượng gió (NLG) và đặc điểm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 Năng lượng gió thường được khai thác từ các trạm đặt ở độ cao (20-70)m so với bề mặt trái đất. Trên độ cao lớn (8-12)km gọi là tầng đối lưu, có gió thường

Các file đính kèm theo tài liệu này:

  • pdf1.pdf