Kinh tế vĩ mô - Chương 5: Cạnh tranh và độc quyền

Nội dung chương 5

 Cấu trúc thị trường

 Thị trường cạnh tranh hoàn hảo

 Thị trường độc quyền thuần túy

 Thị trường cạnh tranh độc quyền

 Độc quyền nhóm

3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3

Nội dung chương 5

 Cấu trúc thị trường

 Các quyết định về giá

 Chiếm đoạt thặng dư người tiêu dùng

 Phân biệt giá

 Phân biệt giá theo thời điểm và định giá lúc cao điểm

 Đặt giá cả hai ph

pdf28 trang | Chia sẻ: hongha80 | Lượt xem: 585 | Lượt tải: 0download
Bạn đang xem trước 20 trang nội dung tài liệu Kinh tế vĩ mô - Chương 5: Cạnh tranh và độc quyền, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
nh của người khác  Cái mà tôi quyết định có ảnh hưởng đến kết cục của bạn và cái mà bạn quyết định cũng ảnh hưởng đến kết cục của tôi.  Cần phải đưa ra quyết định như thế nào? 1293/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Trò chơi đồng thời  Xác định ma trận lợi ích (ma trận kết cục): chỉ ra tất cả các kết cục của mỗi người chơi tương ứng với tất cả các hành động của mỗi người.  Xác định hành động có kết quả tốt nhất cho cả mình và đối thủ  Tìm ra cân bằng Nash 1303/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Cân bằng Nash  Cân bằng Nash là một tập hợp các chiến lược (hoặc hành động) mà mỗi người chơi có thể làm điều tốt nhất cho mình, khi cho trước hành động của các đối thủ.  Mỗi người chơi không có động cơ xa rời chiến lược Nash của mình nên đây là các chiến lược ổn định 1313/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Cân bằng Nash  Nhắc lại:  Cân bằng Cournot chính là cân bằng Nash:  Hai hãng ra quyết định sản lượng đồng thời.  Mỗi hãng sản xuất ở mức sản lượng làm hãng tối đa hóa lợi nhuận khi biết các hãng đối thủ sản xuất bao nhiêu.  Cân bằng Stackelberg cũng là cân bằng Nash:  Một hãng ra quyết định sản lượng trước, một hãng hành động theo sau  Mỗi hãng làm điều tốt nhất cho mình khi cho trước quyết định của đối thủ 1323/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3/3/2013 23 Thể hiện một trò chơi 133 Người chơi Chiến lược Kết cục Hãng B Không Q/cáo Q/cáo Hãng A Ko Q/cáo 50 , 50 20 , 60 Q/cáo 60 , 20 30 , 30 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Giải quyết trò chơi  Phản ứng tốt nhất của hãng A  Nếu Hãng B không quảng cáo: Quảng cáo  Nếu Hãng B quảng cáo: Quảng cáo  Hãng A sẽ quảng cáo bất kể hãng B có quảng cáo hay không 134 Hãng B Ko Q/cáo Q/cáo Hãng A Ko Q/cáo 50 , 50 20 , 60 Q/cáo 60 , 20 30 , 30 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Chiến lược ưu thế  Chiến lược ưu thế là một chiến lược hoặc hành động mang lại kết cục tốt nhất dù cho các đối thủ có quyết định làm gì đi chăng nữa  Nếu một trò chơi có chiến lược ưu thế:  các đối thủ sẽ lựa chọn chiến lược ưu thế của mình 1353/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Chiến lược ưu thế và cân bằng Nash  Chiến lược ưu thế: Tôi đang làm điều tốt nhất có thể được cho tôi, bất kể bạn có làm điều gì đi nữa. Bạn đang làm điều tốt nhất có thể cho bạn, bất kể tôi làm gì đi nữa.  Cân bằng Nash: Tôi đang làm điều tốt nhất có thể được, cho trước cái bạn đang làm. Bạn đang làm điều tốt nhất có thể được, cho trước cái tôi đang làm  Cân bằng chiến lược ưu thế là trường hợp đặc biệt của cân bằng Nash 1363/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Chiến lược ưu thế  Nguyên tắc:  Nếu bạn có chiến lược ưu thế, hãy sử dụng nó  Dự đoán rằng đối thủ của bạn cũng sử dụng chiến lược ưu thế của họ nếu như họ cũng có chiến lược ưu thế 1373/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Tình thế lưỡng nan của những người tù 138 Người B Thú tội Không thú tội Người A Thú tội 8 , 8 0 , 20 Không thú tội 20 , 0 1 , 1 - Chiến lược ưu thế của người A: Thú tội - Chiến lược ưu thế của người B: Thú tội - Cân bằng xảy ra khi cả hai người cùng thú tội 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3/3/2013 24 Trò chơi quảng cáo 139 Hãng B Lớn Trung bình Hãng A Lớn 70 , 50 140 , 25 Trung bình 25 , 140 120 , 90 - Cả hai hãng đều có chiến lược ưu thế - Ở trạng thái cân bằng, kết cục của hai hãng đều bị giảm đi so với trường hợp hai hãng hợp tác với nhau 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 140 Ra quyết định như thế nàokhi chỉ có một người chơi có chiếnlược ưu thế? Giả định rằng người chơi kia sử dụng chiến lược ưu thế của họ, khi đó sẽ chọn chiến lược phù hợp nhất khi đã biết chiến lược họ sử dụng 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Khi chỉ một người chơi có chiến lược ưu thế 141 Hãng B Q/cáo Ko Q/cáo Hãng A Q/cáo 10 , 5 15 , 0 Ko Q/cáo 6 , 8 20 , 2 - Hãng A không có chiến lược ưu thế - Hãng B có chiến lược ưu thế: Quảng cáo - Hãng A cho rằng B sẽ quảng cáo  khi đó lựa chọn tốt nhất của hãng A là Quảng cáo 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 142 Nếu không người chơi nào có chiến lược ưu thế? 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Quyết định giá khi không có chiến lược ưu thế 143 $2 $4 $5 Bar 1 $2 10 , 10 14 , 12 14 , 15 $4 12 , 14 20 , 20 28 , 15 $5 15 , 14 15 , 28 25 , 25 Bar 2 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Loại trừ liên tiếp những chiến lược bị lấn át  Xác định xem có người chơi nào có chiến lược bị lấn át không?  Chiến lược bị lấn át là một chiến lược luôn có chiến lược khác tốt hơn nó  Nếu có chiến lược bị lấn át:  Loại bỏ chiến lược bị lấn át  Làm giảm kích thước của ma trận lợi ích  Lặp lại bước trên cho đến khi không còn chiến lược bị lấn át  Xác định điểm cân bằng 1443/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3/3/2013 25 145 $2 $4 $5 Bar 1 $2 10 , 10 14 , 12 14 , 15 $4 12 , 14 20 , 20 28 , 15 $5 15 , 14 15 , 28 25 , 25 Bar 2 Cân bằng Nash ($4,$4) Loại trừ liên tiếp những chiến lược bị lấn át 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG  Giả sử có hai hãng Alpha và Beta  Hai hãng có 3 sự lựa chọn:  Không mở rộng khả năng sản xuất: giữ nguyên quy mô  Mở rộng khả năng sản xuất với quy mô nhỏ  Mở rộng khả năng sản xuất với quy mô lớn 146 Loại trừ liên tiếp những chiến lược bị lấn át 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 147 Loại trừ liên tiếp những chiến lược bị lấn át Hãng Beta Giữ nguyên Nhỏ Lớn Hãng Alpha Giữ nguyên $18, $18 $15, $20 $9, $18 Nhỏ $20, $15 $16, $16 $8, $12 Lớn $18, $9 $12, $8 $0, $0 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 148 Loại trừ liên tiếp những chiến lược bị lấn át Thứ tự loại trừ chiến lược bị lấn át không tác động đến kết quả Hãng Beta Giữ nguyên Nhỏ Lớn Hãng Alpha Giữ nguyên $18, $18 $15, $20 $9, $18 Nhỏ $20, $15 $16, $16 $8, $12 Lớn $18, $9 $12, $8 $0, $0 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Phân tích phản ứng tốt nhất  Không phải mọi trò chơi đều có chiến lược ưu thế và chiến lược bị lấn át  Cần phân tích phản ứng tốt nhất để tìm ra cân bằng Nash 1493/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Phân tích phản ứng tốt nhất  Ứng với mỗi chiến lược của đối thủ, tìm phản ứng tốt nhất của người chơi  Ứng với mỗi chiến lược của người chơi 2, tìm phản ứng tốt nhất của người chơi 1: Trong mỗi cột, tìm kết cục cao nhất của người chơi 1  Ứng với mỗi chiến lược của người chơi 1, tìm phản ứng tốt nhất của người chơi 2: Trong mỗi dòng, tìm kết cục cao nhất của người chơi 2  Cân bằng Nash xảy ra tại ô xảy ra kết cục cao nhất của cả hai người chơi  Khi phân tích phản ứng tốt nhất không tìm ra cân bằng Nash không có cân bằng Nash đối với các chiến lược thuần túy 1503/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3/3/2013 26 Phân tích phản ứng tốt nhất  Ví dụ  Có hai hãng cạnh tranh nhau, mỗi hãng kiếm được $45.000  Cả hai hãng có thể đầu tư vào nghiên cứu triển khai với chi phí là $45.000  Nghiên cứu triển khai chỉ thành công khi cả hai hãng đều tham gia  Nếu nghiên cứu triển khai thành công, mỗi hãng sẽ kiếm được $95.000 1513/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Phân tích phản ứng tốt nhất  Có hai cân bằng Nash: cả hai cùng đầu tư, hoặc cả hai cùng không đầu tư  Các ô khác không phải là cân bằng Nash:  Nếu hãng 1 đầu tư và hãng 2 không đầu tư: cả hai hãng đều có động cơ thay đổi chiến lược của mình 152 Đầu tư Không Hãng 1 Đầu tư 50 , 50 0 , 45Không 45 , 0 45 , 45 Hãng 2 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Chiến lược maximin Người chơi 2 Trái Phải Người chơi 1 Trên 1, 0 1, 1 Dưới -1000, 0 2, 1 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 153 Chiến lược maximin  Trong trò chơi này, chơi “bên phải” là một chiến lược ưu thế đối với người chơi 2 vì bằng việc sử dụng chiến lược này, người chơi 2 sẽ được lợi hơn (thu được 1 chứ không phải là 0), bất kể người chơi 1 có làm gì đi nữa. Như vậy, người chơi 1 sẽ dự kiến rằng người chơi 2 sẽ chơi chiến lược “bên phải”. Trong trường hợp này, người chơi 1 sẽ được lợi hơn bằng việc chơi “bên dưới” (và thu được 2) chứ không phải là chơi “bên trên” (và thu được 1). Rõ ràng, kết cục (dưới, phải) là cân bằng Nash của trò chơi này. Nhưng lưu ý rằng, người chơi 1 phải biết rằng người chơi 2 hiểu trò chơi này và là người có lí trí. Nếu người chơi 2 tình cờ bị lỗi và chơi “bên trái” thì sẽ cực kỳ thiệt hại cho người chơi 1. 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 154 Chiến lược maximin  Nếu là người chơi 1, bạn sẽ làm gì? Nếu bạn là người thận trọng, và lo ngai rằng việc người chơi 2 có thể không được thông tin đầy đủ hoặc không có lí trí, bạn có thể chọn chơi “bên trên”. Trong trường hợp đó, bạn chắc chắn sẽ được 1, và bạn không có cơ hội mất 1000. Chiến lược như thế được gọi là chiến lược cực đại tối thiểu (maximin) vì nó cực đại hoá cái lợi tổi thiểu có thể thu được. Nếu cả hai người chơi cùng sử dụng chiến lược cực đại tối thiểu thì kết cục sẽ là (trên, phải). Chiến lược cực đại tối thiểu là chiến lược thận trọng, nhưng không phải là chiến lược tối đa hoá lợi nhuận (vì người chơi 1 thu được lợi nhuận bằng 1 chứ không phải bằng 2).  Lưu ý rằng, nếu người chơi 1 biết chắc rằng người chơi 2 sử dụng chiến lược cực đại tối thiểu thì người này sẽ thích chơi “bên dưới” (và thu được 2), thay vì theo chiến lược cực đại tối thiểu là chơi “bên trên”. 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 155 Chiến lược maximin  Nhưng thú tội là một chiến lược ưu thế đối với mỗi người tù – nó đem lại kết cục tốt hơn cho họ, không cần biết đến chiên lược của người tù kia.  Các chiến lược ưu thế cũng là các chiến lược cực đại tối thiểu.  Kết cục trong đó cả hai người tù cùng thú tội vừa là cân bằng Nash vừa là giải pháp cực đại tối thiểu. Như vậy, theo cách suy luật logic nhất thì thú tội là hợp lý nhất đối với mỗi người tù. 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 156 3/3/2013 27 Chiến lược maximin  Chiến lược maximin (cực đại hóa tối thiểu)  Đối với mỗi chiến lược, xác định kết cục thấp nhất  Trong các kết cục thấp nhất này, lựa chọn kết cục có giá trị cao nhất  Chiến lược maximin là chiến lược thận trọng, nhưng không tối đa hóa lợi nhuận  Nó có thể là cân bằng Nash, có thể không. 1573/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Chiến lược maximin  Nếu hãng 1 không đầu tư mất lớn nhất là -10  Nếu hãng 1 đầu tư mất lớn nhất là -100  Nếu hãng 1 lựa chọn theo nguyên tắc maximin chọn không đầu tư 158 Không Đầu tư Hãng 1 Không 0 , 0 -10, 10Đầu tư -100,0 20, 10 Hãng 2 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Trò chơi tuần tự  Nếu hai hãng quyết định đồng thời có 2 cân bằng Nash không biết chắc các hãng sẽ lựa chọn như thế nào  Nếu hãng 1 là hãng quyết định trước:  Hãng 1 sẽ quyết định đầu tư và hãng 2 cũng quyết định đầu tư 159 Đầu tư Không Hãng 1 Đầu tư 50 , 50 0 , 45Không 45 , 0 45 , 45 Hãng 2 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Trò chơi tuần tự  Hãng A là hãng độc quyền, hãng B muốn xâm nhập vào thị trường  Hãng A có hai sự lựa chọn là: không phản ứng gì hoặc đe dọa bằng cách giảm giá  Hãng B có hai sự lựa chọn là gia nhập thị trường hoặc không 1603/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Trò chơi tuần tự 161 Hãng A Không p/ứng Đe dọa Gia nhập 50 , 50 -50 , -50 Không 0 , 100 0 , 100H ãn g B Sử dụng phương pháp phản ứng tốt nhất, tìm được hai cân bằng Nash 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Trò chơi dạng mở rộng 162 B A 0 , 100 -50 , -50 50 , 50 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG 3/3/2013 28 Nhìn xa hơn  Hãng B quyết định trước: có gia nhập thị trường hay không  Để quyết định hãng B cần phải xem phản ứng của hãng A như thế nào  Nếu hãng B gia nhập:  Hành động tốt nhất của hãng A là không phản ứng 1633/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG và suy luận ngược  Xem xét quyết định của hãng B  Quyết định tốt nhất là hãng B gia nhập và hãng A không phản ứng 164 B A 0 , 100 50 , 50 Không phản ứng 3/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Nguyên tắc  Nhìn xa hơn và suy luận ngược  Dự đoán rằng đối thủ của bạn có hành động gì vào ngày mai, để bạn đưa ra được phản ứng tốt nhất ngày hôm nay 1653/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Giải quyết trò chơi tuần tự  Bắt đầu bằng quyết định cuối cùng trong trò chơi  Xác định chiến lược mà người chơi sẽ chọn  Cắt bớt cây trò chơi:  Loại bỏ chiến lược bị lấn át  Lặp lại quá trình trên cho đến khi xác định được quyết định của người chơi đầu tiên 1663/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Hai hãng quyết định sản lượng  Hai hãng độc quyền cạnh tranh nhau về sản lượng  Hàm cầu thị trường là P = 30 – Q  Trong đó Q = Q1 + Q2  Giả định cả hai hãng có chi phí biên bằng 0  Cân bằng Cournot xảy ra khi hai hãng đều quyết định sản lượng Q1 = Q2 = 10 và lợi nhuận mỗi hãng là 100  Nếu hãng 1 quyết định trước Q1 = 15 và Q2 = 7,5, lợi nhuận tương ứng là 112,5 và 56,25 1673/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG Hai hãng quyết định sản lượng Hãng 2 7,5 10 15 Hãng 1 7,5 112,5; 112,5 93,75; 125 56,25; 112,5 10 125; 93,75 100; 100 50; 75 15 112,5; 56,25 75; 50 0; 0 1683/3/2013 GIẢNG VIÊN: PHAN THẾ CÔNG

Các file đính kèm theo tài liệu này:

  • pdfly_thuyet_kinh_te_hoc_vi_mo_ch_5_micro_ch_863.pdf
Tài liệu liên quan