Phương pháp đo phổ hấp thụ nguyên tử là một kỹ thuật phân tích hoá lý
đã và đang được phát triển và phát triển rộng rãi trong nhiều ngành khoa học
kỹ thuật, trong sản xuất công nghiệp, nông nghiệp, y dược, địa chất, hoá học.
Nhất là ở các nước phát triển,phương pháp phân tích theo phổ hấp thụ
nguyên tử đã là một phương pháp tiêu chuẩn để phân tích lượng vết kim loại
trong nhiều đối tượng mẫu khác nhau như: đất, nước, không khí, thực phẩm,
v.v
Ở nước ta kỹ thuật phân tích bằng phổ hấp phu nguyên tử AAS cũng đã
được chú ý và phát triển trong những năm gần đây đặc biệt là trong các
trường đại học viện nghiên cứu hầu như được trang bị khá tốt những thiết bị
này để phục vụ cho nghiên cứu giảng dạy và dịch vụ phân tích.
Hiện nay trong lĩnh vực bảo vệ môi trường, phương pháp này là một trong
những công cụ đắc lực để xác định hàm lượng các kim loại nặng và những
nguyên tố độc hại trong tự nhiên và trong các sản phẩm khác nhau
118 trang |
Chia sẻ: Mr hưng | Lượt xem: 1181 | Lượt tải: 0
Bạn đang xem trước 20 trang nội dung tài liệu Hóa đại cương - Bài 2: Quang phổ hấp thu nguyên tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
dụ: Xác định chỉ số Miller của một số mặt tinh thể lập phương quan
trọng sau.
Bảng 3.4
Tiêu chí X y z
Tọa độ điểm cắt
Lấy nghịch đảo
Triệt tiêu phân số
1/3
3
6
2/3
3/2
3
1
1
2
Chỉ số Miller sẽ là (6 3 2)
Tính toán
Tiêu chí X y z
Tọa độ điểm cắt
Lấy nghịch đảo
Triệt tiêu phân số
1
1
1
0
0
0
0
Chỉ số Miller của mặt phẳng sẽ là (1 0 0).
Bằng cách tương tự có thể xác định được chỉ số Miller của các đại lượng
trên.
Trong cấu trúc tinh thể lập phương khoảng cách (d) giữa các mặt phẳng
song song gần nhau nhất có cùng chỉ số Miller được ký hiệu là dhkl và được
tính toán theo công thức sau:
2 2 2
2 2
1 h k l
d a
(3.4)
144
Trong đó: a là hằng số mạng.
1.2.7.Chỉ số mặt tinh thể trong mạng sáu phương xếp chặt (SPXC)
Chỉ số này còn được gọi là chỉ số Miller- Bravais và được ký hiệu bằng 4
chữ h, k, i, l, (h k i l) và được thiết lập trong hệ tọa độ 4 trục trong ô cơ bản.
+c
-c
+a2-a2
+a1
-a1+a3
-a3
120
o
C
Hình 3.8: Bốn trục tọa độ của tinh thể SPXC.
Ba trục cơ sở là a1, a2, a3 hợp với nhau từng đôi, một góc 120
0, trục thứ 4
(c) đặt tại tâm của ô cơ bản.
Nghịch đảo của các giao điểm của mặt phẳng tinh thể với trục a1, a2, a3, c
sẽ được các chỉ số h, k, i, và l.
Mặt đáy của các ô cơ bản của SPXC có ký hiệu là (0001).
Mặt bên hay mặt lăng kính tùy theo vị trí của nó mà có các chỉ số, các ký
hiệu khác nhau và tạo thành họ mặt {1010 }
145
Hình 3.9: Chỉ số Miller- Bravais của mặt tinh thể SPXC
1.2.8.Lỗ hổng trong cấu trúc mạng.
Lỗ hổng là không gian trống bị giới hạn bởi hình khối nhiều mặt mà mỗi
khối là tâm nguyên tử hoặc ion nút mạng. Kích thước lỗ hổng được đánh giá
bằng bán kính của quả cầu lớn nhất có thể đặt lọt vào không gian trống đó.
Hình dạng, kích thước lỗ hổng phụ thuộc vào kiểu cấu trúc mạng.
Lỗ hổng thường gặp có dạng khối bốn mặt hoặc tám mặt như mô tả trong
hình sau:
Hình 3.10: Các loại lỗ hổng trong mạng LPTM (a) và LPTK (b)
1.2.9.Tính thù hình
146
Nhiều nguyên tố có thể tồn tại ở các dạng tinh thể khác nhau phụ thuộc
vào nhiệt độ và áp suất.
Ví dụ: Sắt tồn tại ở cả hai cấu trúc tinh thể LPTK và LPTM trong suốt
thang nhiệt độ từ nhiệt độ phòng đến Tnc = 1539
oC. Sắt tồn tại từ
-273oC 912oC có cấu trúc tinh thể LPTK; sắt từ 912oC 1394oC có cấu trúc
tinh thể LPTM; sắt delta từ 1394oC 1539oC cấu trúc LPTK nhưng có hằng
số mạng lớn hơn sắt .
Bảng 3.5. Dạng tinh thể thù hình của mốt số kim loạ1.
Kim loại
Cấu trúc tinh thể
To phòng To khác
Ca
Co
Fe
Li
Na
Ti
Y
Zr
LPTM
SPXC
LPTK
LPTK
LPTK
SPXC
SPXC
SPXC
LPTK (> 447OC)
LPTM (> 427OC)
LPTM (912oC 1394oC)
LPTK (> 1394oC)
SPXC (< -193oC)
SPXC (< -233oC)
LPTK (> 880OC)
LPTK (> 1481OC)
LPTK (> 872OC)
1.2.10. Sai lệch mạng tinh thể
Trong thực tế tinh thể không hoàn chỉnh mà thường chứa các dạng
khuyết tật khác nhau dẫn đến tính chất cơ học và vật lý như tính dẫn điện, ăn
mòn kim loại....
Sai lệch mạng tinh thể có thể tồn tại ở 3 dạng chính sau:
- Khuyết tật điểm.
- Khuyết tật đường lệch.
- Khuyết tật mặt.
Khuyết tật điểm đơn giản nhất là vị trí khuyết nguyên tử tạo thành lỗ trống
(vacancy) trong quá trình tạo tinh thể.
Năng lượng hình thành các khuyết tật cân bằng cỡ 1ev và số lượng các
khuyết tật cân bằng phụ thuộc vào nhiệt độ theo hàm mũ:
*exp( )v
Q
N N
RT
(3.5)
Trong đó: N – Số nút mạng.
Q – Năng lượng tạo thành lỗ trống.
147
k – Hằng số Boltzmann.
T – nhiệt độ tuyệt đối (K).
Theo phương trình trên thì số lượng tăng rất nhanh theo nhiệt độ.
Vacancy trong kim loại cũng có thể được tạo thành khi có sự biến dạng đàn
hồi, nguội nhanh hoặc bắn phá bằng các hạt năng lượng cao như nơtron.
Vacancy không cân bằng có xu hướng tạo thành các đám vacancy. Đôi khi
nguyên tử trong tinh thể chiếm một vị trí ngoài nút giữa các nguyên tử xung
quanh tạo ra khuyết tật ngoài nút hay nguyên tử xen kẽ.
Tronh thực tế không có vật liệu hoặc kim loại nào sạch tuyệt đối 100%
mà chỉ đạt 99,9999%. Vì vậy một lượng rất nhỏ nguyên tử pha tạp thay thế
trong silic nguyên chất có thể ảnh hưởng rất lớn đến tính dẫn điện của silic.
Khuyết tật đường lệch trong tinh thể được tạo thành bởi biến dạng
thường xuyên hoặc biến dạng đàn hồi hoặc trong quá trình hoá rắn của tinh
thể.
Khuyết tật mặt là sự sai lệch mặt trong vật liệu đa tinh thể gồm nhiều hạt
với định hướng tinh thể khác nhau.
1.2.11. Đơn tinh thể
Đơn tinh thể là vật tinh hể có mạng đồng nhất và định hướng không đổi
trong toàn bộ thể tích.
Trong tự nhiên hầu như đơn tinh thể kim loại không tồn tại, phần lớn nó
được tạo ra bằng công nghệ tổng hợp. Các loại đơn tinh thể được ứng dụng
nhiều trong công nghiệp bán dẫn và vật liệu điện tử.
1.2.12. Đa tinh thể
Trong thực tế hầu như chỉ gặp vật liệu đa tinh thể gồm rất nhiều tinh thể
nhỏ (cỡ 1 m) được gọi là hạt có cùng cấu trúc mạng nhưng với định hướng
khác nhau mang tính ngẫu nhiên và liên kết với nhau bằng biên giới hạt.
Hình 3.11: Mô hình đơn tinh thể và đa tinh thể
148
AA - Mô hình đơn tinh thể; b - Đa tinh thể, c - Vi hợp kim đa tinh thể
1.2.13. Kích thước hạt
Kích thước hạt của vật liệu đa tinh thể có ý nghĩa quan trọng và ảnh
hưởng nhiều đến tính chất của kim loạ1. Một trong những phương pháp đo
kích thước hạt thường dùng theo ASTM trong cấp hạt n được xác định theo
công thức sau:
N = 2 n-1 (3.6)
Trong đó:
N - là số hạt trên một . vuông bề mặt ở độ phóng đại cao.
n - là số nguyên được gọi là cấp hạt ASTM.
Có 16 cấp hạt khác nhau theo thứ tự hạt nhỏ dần.
Như vậy một cấp độ hạt tương ứng với số lượng hạt trên một đơn vị diện
tích. Người ta thường xác định cấp hạt bằng cách so sánh ở cùng một độ
phóng đại (thường là 100) giữa vật liệu nghiên cứu với thang ảnh cấp hạt
chuẩn ASTM với kích thước hạt khác nhau.
Siêu hạt có cấu trúc tinh thể khá hoàn chỉnh và có kích thước rất nhỏ
(nm).
Có cấu trúc tinh thể khá hoàn chỉnh định hướng lệnh nhau một góc rất
nhỏ (1-2 o0)và ngăn cách nhau bằng biên giới siêu hạt.Biên gi7ới nàu thực
chất là những lệnh biên có chiều dày nhỏ hơn so với biên gi7ới hạt đa tinh thể.
Trong khi đa tinh thể có cấu trúc hàng chục m, thậm chí hàng trăm m.
Bảng 3.6: Cấp hạt theo ASTM.
Cấp hạt Số hạt trong
in2, x 100
Số hạt trong
1 mm2 x 1
Diện tích thật
của 1 hạt (mm2)
1
2
3
4
5
6
7
8
9
10
1,0
2,0
4,0
8,0
16,0
32,0
64,0
128
256
512
15,5
31,0
62,0
124,0
248
496
992
1980
3970
7940
0,0645
0,0323
0,0161
0,00807
0,00403
0,00202
0,001008
0,000504
0,000252
0,000126
149
2. Nhiễu xạ tia X, phương trình Vulf – Bragg
2.1.Khái niệm nhiễu xạ tia X
Nhiễu xạ là đặc tính chung của các sóng bị thay đổi khi tương tác với vật
chất và là sự giao thoa tăng cường của nhiều hơn một sóng tán xạ. Quá trình
hấp thụ và tái phát bức xạ điện tử còn gọi là tán xạ.
Mỗi photon có năng lượng E tỷ lệ với tần số của nó:
E = h. (3.7)
Mặt khác tần số liên quan tới bước sóng theo công thức sau:
hc
E
(3.8)
Trong đó:
h - hằng số Plank, h = 4,136. 10-15 e5.s hay 6,626.10-34 J.s.
c – tốc độ ánh sáng c = 2,998. 10-8 m/s.
Theo tính toán bước sóng tia X khoảng 0,2 nm (2Ao).
Để mô tả hiện tượng nhiễu xạ người ta đưa ra ba thuật ngữ sau:
- Tán xạ (Scattering): là quá trình hấp thu và tái bức xạ thứ cấp theo các
hướng khác nhau.
- Giao thoa (Interference): là sự chồng chất của hai hoặc nhiều sóng tán xạ
tạo thành sóng tổng hợp.
- Nhiễu xạ (Diffraction): là sự giao thoa tăng cường của nhiều sóng tán xạ.
2.2. Tạo nguồn tia X
Tia X được tạo ra khi các điện tử với tốc độ lớn bị kìm hãm bởi một vật
chắn. Rơnghen phát hiện chỗ phát tia X chính là chỗ có chùm điện tử đập
vào, và ông đã tạo ra ống phát tia Rơnghen. Ngày nay, ống phát tia Rơnghen
ngày càng được hoàn thiện hơn nhưng chúng đều có những bộ phận chính
sau:
Hai điện cực Catot và Anot đặt trong ống thủy tinh bằng thạch anh có
chân không cao (10-6 – 10-7 mmHg).
Catot K thường được làm bằng dây Vonfram và phát ra chùm điện tử khi
được đốt nóng.
Anot là một đĩa cũng được làm bằng Vonfram hay Platin. Người ta đặt
vào anot một điện áp rất cao (hàng trăm kV).
Chùm tia điện tử phát ra từ catot được gia tốc do điện áp lớn ở Anot sẽ
bay về phía anot với vận tốc lớn. Khi các điện tử có động năng lớn va đập vào
anot phần lớn năng lượng sẽ biến thành nhiệt năng, chỉ có một phần rất nhỏ <
150
1% được chuyển thành tia 10. Do vậy cần phải làm nguội ống phát Rơnghen
bằng nước.
Tia Rơnghen phát ra từ các ống phát thường là các bức xạ liên tục gồm
nhiều bước sóng khác nhau do các điện tử mất năng lượng trong một loạt va
chạm với các nguyên tử anot, vì mỗi một điện tử mất năng lượng theo cách
khác nhau cho nên các bước sóng tia x cũng khác nhau.
Tùy theo từng điều kiện nhất định (điện thế anot, chất liệu làm anot) có
thể thu được các bức xạ hầu như đơn sắc gọi là các tia Rơnghen đặc trưng.
Hình 3.12: Sơ đồ nguyên tắc ống phát tia Rơnghen.
Các vạch đặc trưng khác nhau sẽ tương ứng với các dịch chuyển điện tử
giữa các mức năng lượng và được ký kiệu là K, L, M theo mô hình cấu trúc
nguyên tử của Bohr.
151
Hình 3.13: Mô hình nguyên tử và sự tạo thành tia X đặc trưng. K K , L
Một số kim loại làm vật liệu anot sẽ cho các vạch đặc trưng sau:
Mg - K = 0,95 Ao.
Fe - K = 1,7 A
o.
Cu - K = 1,5 A
o.
Ag - K = 0,7 A
o.
W - K = 0,5 Ao.
Trong nghiên cứu bằng nhiễu xạ tia X thường chọn tia đặc trưng là K và
tia K Cu là bức xạ thường được sử dụng rộng rãi nhất.
Các vạch K có năng lượng lớn hơn so với L và không bị hấp thụ mạnh
bởi vật liệu nghiên cứu.
2.3. Một số tính chất của tia Rơnghen
Tia X có những tính chất cơ bản sau:
- Khả năng xuyên thấu: tia Rơnghen có khả năng xuyên qua một số
tấm chắn sáng thông thường, làm đen phim ảnh.
- Khả năng gây hiện tượng phát quang (phổ huỳnh quanh tia X).
152
- Gây sự ion hóa của chất khí.
Hiện tượng nhiễu xạ
Nhiễu xạ là sự thay đổi của các tia sáng hoặc các sóng do sự tương tác
của chúng với vật chất.
Khi chùm tia X chiếu vào vật chất sẽ xảy ra tương tác với các điện tử
trong nguyên tử (hoặc hạt nhân nguyên tử nếu chùm tia X có năng lượng đủ
lớn). Khi tương tác với vật chất chùm tia X có thể mất một phần năng lượng
do các hiệu ứng hiệu ứng hấp thụ: xảy ra khi tia X truyền qua vật liệu. Chúng
sẽ bị hấp thụ và cường độ chùm tia sẽ giảm. Sự giảm này tuân theo định luật
cơ bản của sự hấp phụ sóng điện từ như sau:
10
oI I
(3.9)
Trong đó:
I, Io – cường độ của tia X tới và tia X truyền qua.
- hệ số hấp thu khối, = Z .
L - độ dầy lớp vậy chất.
Z - thứ tự nguyên tử.
- bước sóng ánh sáng tới.
2.4. Định luật Vulf-Bragg
Định luật Vulf-Bragg được đưa ra năm 1913 thể hiện mối quan hệ giữa
bước sóng tia X và khoảng cách giữa các mặt phẳng nguyên tử.
Theo lý thuyết về cấu tạo tinh thể, những nguyên tử hay ion phân bố một cách
trật tự đều đặn trong không gian theo một quy luật xác định. Khoảng cách
giữa các nguyên tử (ion) khoảng vài Ao và gần tương đương với bước sóng
tia 10.
Khi chùm tia X đập vào tinh thể thì xuất hiện các tia nhiễu xạ với cường
độ và các hướng khác nhau.
Định luật Bragg giả thiết rằng mỗi mặt phẳng nguyên tử phản xạ sóng tới
độc lập như phản xạ gương,
Giả sử có hai mặt phẳng song song AA‟ và BB‟ (hình 10). Có cùng chỉ số
Miller h, k, l, và cách nhau bởi khoảng cách giữa các mặt phẳng nguyên tử
dhkl.
Giả thiết rằng tia tới là tia đơn sắc song song và cùng pha với bước sóng
chiếu vào hai mặt phẳng này với một góc . Hai tia 1 và 2 bị tán xạ bởi
nguyên tử Q và P cho hai tia phản xạ 1‟ và 2‟ cùng với một góc so với các
mặt phẳng A, B.
153
Hình 3.14: Nhiễu xạ tia X bởi các mặt phẳng của nguyên tử (A-A‟ - B-B‟).
Điều kiện để nhiễu xạ là:
n = SQ + QT = 2dhklSin (3.10)
Quãng đường 1-P-1‟ và 2-Q-2‟ bằng số nguyên lần bước sóng.
Trong đó:
n = 1, 2, 3,gọi là bậc phản xạ.
Phương trình Bragg có dạng sau:
n = 2dhklSin (3.11)
Phương trình này biểu thị mối quan hệ giữa góc các tia nhiễu xạ và
bước sóng tia tới, khoảng cách giữa các mặt phẳng nguyên tử. Nếu định luật
Bragg không được thỏa mãn thì sẽ không xảy ra hiện tượng giao thoa.
Khi n > 1 các phản xạ được coi là phản xạ bậc cao và phương trình
Bragg có thể viết như sau:
= 2(dhkl/n) Sin (3.12)
Thông số d/n là khoảng cách giữa các mặt phẳng hkl và nh, nk, nl là các
chỉ số Miller có khoảng cách bằng l/n cách khoảng giữa các mặt h, k, l.
Định luật Bragg là điều kiện cần nhưng chưa đủ cho nhiễu xạ tia X, vì
nhiễu xạ chỉ có thể chắc chắn xảy ra với các ô đơn vị có các nguyên tử ở ô
góc mạng. Còn các nguyên tử không ở góc ô mạng mà ở trong các vị trí khác,
chúng hoạt động như các tâm tán xạ phụ lệch pha với các góc Bragg nào đó,
kết quả là mất đi một số tia nhiễu xạ theo phương trình phải có mặt.
154
Hình 3.14: Nhiễu xạ tia X từ các mặt của mạng tinh thể.
2.5.Mạng đảo
Mặt phẳng trong không gian thực có thể biểu diễn bằng một nút mạng
trong không gian đảo. Ô cơ bản của mạng đảo được xác định bởi các vectơ
a*, b*, c* thỏa mãn hệ thức sau:
a*a = b*b = c*c = 1
a*b = b*c = c*a = 0
Trong đó a, b, c là các vectơ đơn vị tinh thể.
Mạng đảo có những tính chất sau:
- Mỗi nút mạng đảo tương ứng với một mặt (hkl) của tinh thể.
- Vectơ mạng đảo ghkl = ha
* + kb* + lc* vuông góc với mặt phẳng mang
(hkl) của mạng tinh thể và
Ghkl = 1/d hkl
1
hkl
hkl
g
d
(3.13)
Trong đó dhkl là khoảng cách giữa các mặt phẳng (hkl) trong mạng tinh
thể.
Mạng đảo xác định một khoảng cách vị trí mạng có khả năng dẫn đến sự
nhiễu xạ.
155
Hình 3.15: Quan hệ giữa trục mạng thuận a, b, c và mạng đảo a*, b*, c*.
Mỗi cấu trúc tinh thể có hai mạng liên hợp với nó, mạng tinh thể và mạng
đảo và ảnh nhiễu xạ của tinh thể là một bức tranh mạng đảo của tinh thể.
2.6. Cường độ nhiễu xạ
Có thể tính toán được cường độ nhiễu xạ bằng cách cộng sóng hình sin
với pha và biên độ khác nhau. Hướng của tia nhiễu xạ không bị ảnh hưởng
bởi loại nguyên tử ở từng vị trí riêng biệt và hai ô mạng đơn vị có cùng kích
thước nhưng với sự sắp xếp nguyên tử khác nhau sẽ nhiễu xạ tia X trên cùng
một hướng. Tuy nhiên cường độ của các tia nhiễu xạ này khác nhau.
Để xác định cường độ nhiễu xạ thường tiến hành theo 3 bước sau:
- Nhiễu xạ tia X bởi điện tử tự do.
- Nhiễu xạ tia X bởi nguyên tử.
- Nhiễu xạ bởi ô mạng cơ bản.
2.6.1. Cường độ nhiễu xạ bởi điện tử tự do
Được xác định theo công thức sau:
4
2sin 2
2 2 4
e
I Io
r m ce
(3.14)
Trong đó: Io – Cường độ tia tớ1.
e – Điện tích điện tử.
me – Khối lượng của điện tử.
c – Tốc độ ánh sáng.
r – Khoảng cách giữa tán xạ điện tử đến đầu dò (detectơ).
Biểu thức trên cho thấy năng lượng tán xạ từ các điện tử đơn là rất nhỏ.
2.6.2. Nhiễu xạ bởi một nguyên tử
Nguyên tử có nhiều đám mây điện tử quay xung quanh hạt nhân. Tia tới
bị tán xạ bởi điện tử và hạt nhân. Nhưng hạt nhân của nguyên tử rất lớn cho
156
nên có thể bỏ qua tán xạ bởi hạt nhân, do đó tán xạ toàn phần chủ yếu bởi
các điện tử riêng biệt.
Các điện tử quay quanh hạt nhân ở các vị trí khác nhau sẽ sinh ra sóng
tán xạ với pha khác nhau và sẽ giao thoa với nhau.
Đại lượng thừa số tán xạ nguyên tử f mô tả hiệu xuất tán xạ trên một
hướng riêng biệt được xác định bằng tỷ số sau:
f = bd1/bd2
1
2
bd
f
bd
(3.15)
bd1 – Biên độ sóng tán xạ bởi một nguyên tử.
bd2 – Biên độ sóng tán xạ bởi một điện tử.
Hình 3.16: Tán xạ tia X bởi một nguyên tử giá trị f bằng số điện tử trong
nguyên tử khi 0 hay f = Z (nguyên tử số).
2.6.3. Nhiễu xạ bởi ô mạng cơ bản
Ô mạng cơ bản là phần nhỏ nhất lặp lại tuần hoàn tạo thành tinh thể.
Thường trong tinh thể có chứa các nguyên tố khác nhau sắp xếp ở các vị trí
khác nhau do đó các sóng có biên độ khác nhau sẽ tổ hợp lại để cho cường
độ tổng cộng và được biểu diễn như một hàm mũ phức như sau:
2 ( )i i hu k lAe fe (3.16)
Trong đó: - là sự chênh lệch pha giữa sóng tán xạ bởi nguyên tử B và
sóng tán xạ bởi nguyên tử A đối với mặt phản xạ hkl.
Cường độ nhiễu xạ được dự đoán bởi định luật Bragg và tỷ lệ với bình
phương thừa số cấu trúc
2
F .
Thừa số cấu trúc không phụ thuộc vào hình dạng và kích thước ô cơ
bản.
Tuy vậy cường độ nhiễu xạ không chỉ phụ thuộc vào thừa số cấu trúc mà
còn vào các thừa số khác. Và có thể biểu diễn bằng biểu thức tổng quát sau:
157
21 cos 22 2
2sin cos
I F p e (3.17)
Trong đó: p – Là thừa số lặp.
-2μe – Là thừa số nhiệt.
21+cos 2θ
2sin θcosθ
– Thừa số Lorent.
3. Ứng dụng phổ nhiễu xạ tia X để phân tích thành phần cấu trúc tinh thể
Nhiễu xạ tia X được sử dụng để phân tích cấu trúc vật liệu rắn, mức độ
tinh thể hóa của vật liệu. Vật liệu có thể có cấu trúc tinh thể, vô định hình, thủy
tinh hoặc vật liệu polymer. Trong một số polymer, đặc biệt là các polymer sợi
đơn, chuỗi có thể sắp xếp thành các miền có trật tự. Các miền trật tự này
được gọi là các tinh thể nhỏ hay vi tinh thể.
Zeolit
Zeolit tự nhiên và tổng hợp là alumosilicat có cấu trúc tinh thể xác định
với các lỗ xốp có kích thước đều đặn. Các lỗ này được nối thông với nhau
bằng những đường rãnh cứng có kích thước ổn định tạo thành một hệ thống
lỗ và đường rãnh phát triển có khả năng hấp phụ các phân tử có kích thước
nhỏ hơn.
Zeolit còn được gọi là "rây phân tử".
Công thức thực nhiệm của zeolit như sau:
M2/mO.Al2O3.nSiO2.pH2O
Trong đó: M – cation kim loại hóa trị m.
P – số phân tử H2O kết tinh.
Để tạo thành tinh thể zeolit các tứ diện SiO4/2 và AlO4/2 liên kết với nhau
qua nguyên tử Oxy. Tỷ số giữa Si và Al là đại lượng quan trọng.
Thông thường tỷ lệ SiO4/2 và AlO4/2 = n.
Trong đó n – số nguyên dương, n = 1, 2, 3...
Khi tăng n độ bền của cấu trúc zeolit tăng. Nhưng tứ diện SiO4/2 và AlO4/2
là đơn vị cấu trúc sơ cấp. Những đơn vị này liên kết với nhau tạo thành đơn vị
thứ cấp. Hiện nay đã tổng hợp và phát hiện ra khoảng 7100 lọai zeolit khác
nhau nhung trong thực tế chỉ có khoảng 710 loại có ứng dụng tích cực, trong
đó các loại quan trọng nhất là zeolit Y, X, và ZSM-5.
Các zeolit X, Y có cấu trúc tương tự với cấu trúc của fausasit là một loại
zeolit tự nhiên. Zeolit X, Y có đường kính hốc lớn là 13Ao, thể tích 811 A03,
đường kính cửa sổ thông với hốc lớn là 8-9 A0.
158
Đơn vị cấu trúc thứ cấp của zeolit X, Y là những sodalit được tạo thành
từ 24 tứ diện SiO2 và Al2O3.
ình 3.17: Sơ đồ cấu trúc mạng tinh thể zeolit Y:
Zeolit ZSM-5 tổng hợp không có trong tự nhiên. Tỷ số SiO2 /Al2O3 rất lớn,
thường là 90-100.
Thành phần hóa học của SZM-5 dạng Na
NanAlnSi96-nO192.16H2O
Trong đó n < 27 (thường khoảng 3)
Hằng số mang các giá trị sau: a = 20.1, b = 19.9, c = 13.4 A0
Mạng lưới không gian của ZSM-5 gồm những hệ thống ống cắt nhau tạo
thành mạng không gian 3 chiều.
Hình 3.18: Zeolit ZSM 5
Zeolit ZSM-5 hấp phụ được các phân tử n-parafin, o,p-xylen, 1,2,3-
trimetylbenzen, không hấp phụ các phân tử lớn, cồng kềnh như penta metyl
benzen, 1,2,3- trimetylbenzen.
Trong thực tế chỉ có một số lọai zeolit tự nhiên và tổng hợp được sử
dụng rộng rãi trong công nghiệp đặc biệt là công nghiệp chê biến dầu mỏ và
159
hóa dầu như zeolit X, zeolit Y, zeolit ZSM5,... một số các vật liệu polymer cũng
có cấu trúc rất đặc biệt như lọai polymer tinh thể lỏng.
Tồn tại một số loại polymer bao gồm các phần hạt vi tinh thể phân tán
trong nền vô định hình.
Ví dụ: Các chuỗi PE (CH2 – CH2)n hoặc poly tetra fluoroetylen (CF2 –
CF2)n đều có phần trăm khối lượng lớn vi tinh thể.
Kích thước của các vi tinh thể này có thể xác định bằng sự mở rộng của
pic nhiễu xạ.
Hình 3.19: Vi tinh thể trong polymer
Vật liệu tinh thể cho một loại pic nét do tia nhiễu xạ phát sinh từ các mặt
phẳng mạng khác nhau.
Vật liệu vô định hình cho pic mở rộng mà vị trí đỉnh pic trùng với vị trí pic
mạnh quan sát thấy trong ảnh nhiễu xạ của vật liệu tinh thể của chất đó.
Ví dụ: Ảnh nhiễu xạ của SiO2 vô định hình (thủy tinh) và SiO2 tinh thể
(cristo latite) được đưa ra trong hình sau:
Hình 3.20: Nhiễu xạ tia X của SiO2 tinh thể (a) và SiO2 vô định hình (b).
160
Trong vật liệu vô định hình không có trật tự xa như trong tinh thể. Vật liệu vô
định hình chì có trật tự gần.
Hình 3.21: Trật tự mạng dạng tinh thể và dạng vô định hình.
4. Định lượng thành phần pha tinh thể.
4.1.Cấu tạo máy nhiễu xạ: gồm 3 bộ phận chính
- Nguồn tạo tia 10.
- Detectơ tia 10.
- Bộ phận để mẫu.
Hình 3.23: Các loại giá để mẫu chụp phổ XRD
161
- Loại ống mao quản
- Loại truyền qua
- Loại phản xạ
Các bộ phận này nằm trên chu vi của vòng tròn tiêu tụ (hình 15). Góc
giữa mặt phẳng mẫu và góc tia tới là .
Góc giữa phương chiếu tia X và tia nhiễu xạ là 2 .
Giản đồ nhiễu xạ theo hình học này thường được gọi là giản đồ quét
0 - 2 .
Trong đó nguồn tia X được giữa cố định còn detectơ chuyển động suốt
trong thang đo góc.
Thang đo 2 thường là từ 0o – 170o.
Thông thường người ta quét từ 0o – 140o.
Hình 3.24: Hình học nhiễu xạ kế tia 10.
Để chụp phổ nhiễu xạ tia X, mẫu thường được chế tạo ở dạng bột với
mục đích nhiều tinh thể có định hướng ngẫu nhiên và để chắc chắn rằng một
số lớn hạt thỏa mãn điều kiện nhiễu xạ Bragg n sin2dn .
4.2. Phương pháp Rơnghen dạng bột phân tích cấu trúc vật liệu
Mẫu vật liệu dạng rắn
Mẫu được nghiền nhỏ cỡ 1,0 – 3,0µm và được tạo dưới dạng lớp màng
vài miligram trên đế phẳng. Kích thước bột có ảnh hưởng đến sai số của
cường độ peak. Để sai số này nhỏ hơn1% đòi hỏi phải nghiền vật liệu đến
kích thước hạt cỡ 0,5 – 1µm. Trong thực tế đạt kích thước hạt này rất khó
thực hiện, cho nên thường thì kích thước hạt đạt khoảng 1 - 5µm là khả thi và
sai số trong trường hợp này cho phép là khoảng ±5% có thể chấp nhận để
dùng phân tích định lượng.
162
Sự đồng đều của kích thước hạt cũng có ý nghĩa quan trọng khi chùm tia
X chiếu vào mặt phẳng chứa mẫu, đảm bảo sự sắp xếp ngẫu nhiên mà phần
lớn các tinh thể tuân theo định luật Bragg.
Tia X được chiếu tới với cường độ tia nhiễu xạ được thu bằng detector,
bộ chuẩn trục được đặt trên đường tia để tạo tia mảnh và tích tụ. Bộ lọc đơn
sắc thường là tinh thể.
Mẫu được quay với tốc độ . Detector quay quanh với vận tốc 2 .
Cường độ tia nhiễu xạ 2 được ghi tự động trên giấy vẽ và tín hiệu được xử
lý bằng máy vi tính cho ngay kết quả.
Hình học và kích thước ô đơn vị có thể xác định từ vị trí góc của các pic
nhiễu xạ, còn sự sắp xếp của các nguyên tử trong ô đơn vị liên quan đến
cường độ tương đối của các píc.
Trong phổ nhiễu xạ Rơnghen bột có thể xác định thành phần các pha
hóa học của mẫu phân tích và các dạng tồn tại của cùng một hợp chất và định
lượng các pha.
Mỗi pha gồm một ô mạng nhất định và cho một hệ vạch nhiễu xạ tương
ứng trên giản đồ nhiễu xạ.
Nếu mẫu gồm nhiều pha thì trên giản đồ nhiễu xạ sẽ tồn tại đồng thời nhiều
hệ vạch độc lập với nhau.
Sự có mặt của các vạch nhiễu xạ đặc trưng là cơ sở để xác định định
tính pha có trong mẫu.
4.3. Phân tích định lượng bằng phổ nhiễu xạ tia X
Dựa vào sự phụ thuộc cường độ nhiễu xạ và nồng độ pha theo biểu thức
sau:
P
iI = K
i ρμmi
(3.18)
Trong đó:
Ki- hằng số (Xác định bằng thực nghiệm)
Pi - tỷ lệ trọng lượng pha.
i
- mật độ pha
m - hệ số suy giảm khối lượng của hỗn hợp
Các pha chưa biết trong vật liệu có thể xác định bằng cách so sánh số
liệu nhận được từ giản đồ nhiễu xạ thực nghiệm với số liệu chuẩn trong tài
liệu tham khảo.
163
Trong giản đồ nhiễu xạ, vị trí píc nói lên cấu trúc và độ đối xứng của pha,
còn cường độ píc phản ánh tổng của các pha nhiễu xạ từ mỗi mặt phẳng
trong pha tinh thể và phụ thuộc trực tiếp vào sự phân bố của nguyên tố trong
cấu trúc tinh thể.
Như vậy cường độ píc không những chỉ liên quan đến thành phần định
lượng pha mà còn cấu trúc của pha.
4.4. Đo cường độ vạch phổ
Việc đo đạc cường độ vạch phổ trong phân tích định lượng rất quan
trọng và phụ thuộc vào các yếu tố sau:
- Độ nhậy cấu trúc
- Độ nhậy của thiết bị
- Độ nhậy của mẫu đo
- Độ nhậy của phép đo
Tất cả các yếu tố này phần lớn đều chứa trong thừa số Khkl cấu trúc
mạng.
Cường độ nhiễu xạ liên quan đến thành phần pha, cấu trúc tinh thể của
pha và được biểu diễn qua biểu thức sau:
( )
( / )
e hkl
s
K K X
I (3.19)
Trong đó:
eK - hệ số phụ thuộc vào điều kiện thí nghiệm.
( )hklK - thừa số cấu trúc cho pha .
X - tỷ số giữa khối lượng và thể tích của phân đoạn.
- tỷ trọng pha
( / )s - hệ số hấp phụ khối, hệ số này là một hàm của nhiều các
yếu tố.
Có thể liệt kê những thông số ảnh hưởng như sau:
164
4.5. Phương pháp đinh lượng dựa trên tỷ lệ cường độ nhiễu xạ
Phương pháp hấp thụ nhiễu xạ
Dựa trên tỷ số cường độ của pha trong mẫu phân tích và trong
Các file đính kèm theo tài liệu này:
- phuong_phap_pho_hong_ngoai_p2_8856.pdf