Giáo trình hình thành hệ thống ứng dụng mạch chuyển trong động cơ không đồng bộ roto

Trong sản xuất hiện đại, đểnâng cao năng suất, hiệu suất sửdụng của

máy, nâng cao chất lượng sản phẩm và các phương pháp tự động hoá dây

truyền sản xuất thì hệthống truyền động điện có điều chỉnh tốc độlà không

thểthiếu được, đặc biệt là trong sản xuất công nghiệp. Nó quyết định đến

năng suất, chất lượng sản phẩm, khảnăng linh động, đáp ứng với các thay đổi

nhanh chóng của thịtrường nhằm giữuy tín với khách hàng khi hoà nhập vào

môi trường cạnh tranh quốc tế.

Nước ta là một nước nông nghiệp, quanh năm đều có những sản phẩm

nông sản. Ngoài việc không ngừng tăng vềmặt sốlượng của nông sản mà

việc nâng cao chất lượng nông sản cũng đang được Đảng và Nhà nước ta rất

quan tâm. Vì vậy việc ứng dụng những tiến bộkhoa học kỹthuật vào nông

nghiệp là rất quan trọng. Đặc biệt là trong khâu bảo quản sau thu hoạch, trong

đó quá trình sấy đểbảo quản nông sản rất được quan tâm. Nhiệt độ, độ ẩm và

tốc độgió là những thông sốrất quan trọng trong quá sấy. Nó ảnh hưởng rất

lớn đến chất lượng nông sản. Ởnước ta, việc sấy nông sản đã được tiến hành

từxa xưa nhằm bảo quản nông sản được lâu hơn, nhưng công việc này chủ

yếu dựa vào thiên nhiên là chính. Việc nhận biết đặc tính sấy của nông sản

chủyếu là do kinh nghiệm của người thực hiện sấy. Những năm gần đây đã

có những phòng thí nghiệm sấy được xây dựng nhằm khảo nghiệm đặc tính

sấy của nông sản. Một trong những yếu tốquan trọng tác động đến đặc tính

sấy của nông sản là tốc độgió thổi vào nông sản. Vì vậy việc điều chỉnh tốc

độgió có một ý nghĩa quan trọng và nó đòi hỏi cần phải có một giải pháp điều

chỉnh tốc độchính xác. Việc điều chỉnh tốc độ động cơquạt gió đểthay đổi

tốc độgió thổi vào nông sản đang được ứng dụng rất phổbiến.

pdf92 trang | Chia sẻ: luyenbuizn | Lượt xem: 1173 | Lượt tải: 0download
Bạn đang xem trước 20 trang nội dung tài liệu Giáo trình hình thành hệ thống ứng dụng mạch chuyển trong động cơ không đồng bộ roto, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1 MỞ ĐẦU 1. Đặt vấn đề Trong sản xuất hiện đại, để nâng cao năng suất, hiệu suất sử dụng của máy, nâng cao chất lượng sản phẩm và các phương pháp tự động hoá dây truyền sản xuất thì hệ thống truyền động điện có điều chỉnh tốc độ là không thể thiếu được, đặc biệt là trong sản xuất công nghiệp. Nó quyết định đến năng suất, chất lượng sản phẩm, khả năng linh động, đáp ứng với các thay đổi nhanh chóng của thị trường nhằm giữ uy tín với khách hàng khi hoà nhập vào môi trường cạnh tranh quốc tế. Nước ta là một nước nông nghiệp, quanh năm đều có những sản phẩm nông sản. Ngoài việc không ngừng tăng về mặt số lượng của nông sản mà việc nâng cao chất lượng nông sản cũng đang được Đảng và Nhà nước ta rất quan tâm. Vì vậy việc ứng dụng những tiến bộ khoa học kỹ thuật vào nông nghiệp là rất quan trọng. Đặc biệt là trong khâu bảo quản sau thu hoạch, trong đó quá trình sấy để bảo quản nông sản rất được quan tâm. Nhiệt độ, độ ẩm và tốc độ gió là những thông số rất quan trọng trong quá sấy. Nó ảnh hưởng rất lớn đến chất lượng nông sản. Ở nước ta, việc sấy nông sản đã được tiến hành từ xa xưa nhằm bảo quản nông sản được lâu hơn, nhưng công việc này chủ yếu dựa vào thiên nhiên là chính. Việc nhận biết đặc tính sấy của nông sản chủ yếu là do kinh nghiệm của người thực hiện sấy. Những năm gần đây đã có những phòng thí nghiệm sấy được xây dựng nhằm khảo nghiệm đặc tính sấy của nông sản. Một trong những yếu tố quan trọng tác động đến đặc tính sấy của nông sản là tốc độ gió thổi vào nông sản. Vì vậy việc điều chỉnh tốc độ gió có một ý nghĩa quan trọng và nó đòi hỏi cần phải có một giải pháp điều chỉnh tốc độ chính xác. Việc điều chỉnh tốc độ động cơ quạt gió để thay đổi tốc độ gió thổi vào nông sản đang được ứng dụng rất phổ biến. Hiện nay cùng với sự phát triển kỹ thuật vi điện tử, công nghệ thông tin là sự phát triển của kỹ thuật điều khiển và tự động hoá. Trong sản xuất công 2 nghiệp tự động hoá quá trình sản xuất đang là mũi nhọn và then chốt để giải quyết vấn đề nâng cao năng suất và chất lượng sản phẩm. Một trong những vấn đề quang trọng trong dây truyền tự động hoá là việc điều chỉnh tốc độ của động cơ truyền động. Trong đó phải kể đến hệ thống điều khiển tốc độ động cơ không đồng bộ roto lồng sóc. Gần đây loại động cơ này được sử dụng rất rộng rãi do nó có nhiều ưu điểm nổi bật so với các động cơ khác. Có nhiều phương pháp điều khiển tốc độ động cơ điện xoay chiều và mỗi một phương pháp lại có nhưng ưu điểm riêng. Đối với loại động cơ không đồng bộ roto lồng sóc một xu hướng điều khiển thông dụng được dùng nhiều nhất là điều khiển tần số nguồn cung cấp (còn gọi là phương pháp điều khiển tốc độ động cơ bằng biến tần). Phương pháp điều khiển tốc độ động cơ bằng biến tần là phương pháp hiện đại cho phép điều chỉnh tốc độ động cơ xoay chiều trơn, rộng và hiệu quả. Ưu điểm này đã đáp ứng được yêu cầu điều khiển tốc độ gió trong hệ thống thí nghiệm sấy. Được sự phân công của bộ môn điện, với sự hướng dẫn của thầy giáo Nguyễn Văn Đường, cùng với sự giúp đỡ của các thầy giáo trong bộ môn đề tài: “Tự động điều chỉnh tốc độ động cơ xoay chiều một pha bằng biến tần áp gián tiếp” đã hoàn thành. Do thời gian dành cho đề tài có hạn, khả năng bản thân còn nhiều hạn chế nên đề tài không tránh khỏi những thiếu sót. Rất mong sự đóng góp ý kiến của các thầy cô giáo và các bạn bè đồng nghiệp để đề tài được hoàn thiện hơn. 2. Mục đích và nội dung nghiên cứu của đề tài. - Nghiên cứu về mặt lý thuyết hệ thống điều khiển tốc độ quay và biến tần. - Tìm hiểu kỹ thuật điều khiển động cơ điện xoay chiều một pha bằng biến tần áp. - Xây dựng được hệ thống tự động điều chỉnh tốc độ quạt gió bằng biến tần áp của hệ thống sấy nông sản. - Thiết kế và lắp ráp được mạch. 3 CHƯƠNG 1 TỔNG QUAN 1.1 Điều khiển tốc độ quay động cơ xoay chiều trong nước và trên thế giới Trước khi tìm hiểu về các phương pháp điều khiển động cơ xoay chiều thì ta tìm hiểu về động cơ không đồng bộ. 1.1.1 Khái quát về động cơ không đồng bộ Động cơ không đồng bộ được sử dụng một cách rộng rãi trong công nghiệp và chiếm tỷ lệ lớn so với các loại động cơ khác. Sở dĩ như vậy là do động cơ không đồng bộ có kết cấu đơn giản, dễ chế tạo, vận hành an toàn, sử dụng nguồn trực tiếp từ lưới điện. Trước đây các hệ truyền động có điều chỉnh tốc độ sử dụng động cơ không đồng bộ chiếm tỷ lệ rất nhỏ do khó khăn trong việc điều chỉnh tốc độ. Trong thời gian gần đây với sự phát triển như vũ bão của kỹ thuật điện tử, động cơ không đồng bộ đã được khai thác triệt để các ưu điểm của nó và dần dần thay thế cho động cơ điện một chiều trong các hệ truyền động. hình 1.1 Sơ đồ nguyên lý động cơ không đồng bộ Động cơ không đồng bộ có cấu tạo gồm hai phần stator và rotor. Phần cảm (stator) có các dây quấn được đặt vào các rãnh của lõi thép và được cách điện với lõi thép. Phần ứng (rotor) được chia làm hai loại chính là: rotor dây quấn và rotor lồng sóc. Động cơ không đồng bộ rotor dây quấn có kết cấu giống như dây quấn stator. Đặc điểm của loại động cơ không đồng bộ rotor 4 dây quấn là có thể thông qua chổi than đưa điện trở phụ vào mạch điện rotor để cải thiện tính năng mở máy, điều chỉnh tốc độ hoặc cải thiện hệ số công suất của máy. Động cơ không đồng bộ rotor lồng sóc thì kết cấu rất khác với dây quấn stator. Trong rãnh của lõi thép rotor người ta đặt vào thanh dẫn bằng đồng hay nhôm được nối với nhau bằng vòng ngắn mạch. Dây quấn lồng sóc không cần cách điện với lõi sắt. Động cơ không đồng bộ làm việc theo nguyên lý từ trường quay. Khi ta đưa dòng điện xoay chiều vào dây quấn stator của động cơ không đồng bộ thì trong dây quấn stator sẽ sinh ra một từ trường quay với tốc độ n1. p fn 11 = trong đó f1 là tần số nguồn cung cấp; p là số đôi cực của stato. Từ trường này sẽ quét qua dây quấn rotor và cảm ứng trên nó một sức điện động cảm ứng e21. Khi dây quấn rotor được nối kín mạch nó sẽ sinh ra một dòng điện I2. Từ thông do dòng điện stator và dòng điện rotor tạo nên đó là từ thông khe hở không khí giữa stator và rotor. Sự tương tác giữa từ thông này và dòng điện rotor tạo ra mômen quay Mq. Nếu mômen Mq > Mc thì roto sẽ quay (Mc là mômen cản). Gọi tốc độ quay của rotor là n thì n luôn nhỏ hơn tốc độ của từ trường quay n1, ví khi n = n1 lúc đó e21 = 0; I2 = 0; Mq = 0 rotor sẽ giảm tốc độ. Để đánh giá sự khác nhau giữa n và n1 ta đưa ra khái niệm về độ trượt s. 1 1 n - ns = n Khi bắt đầu mở máy n = 0 nên s = 0, khi n ≈ n1 độ trượt s ≈ 0. Trong chế độ động cơ 0 < n < n1 do đó 0 < s < 1. Trong chế độ máy phát ta phải quay rotor với n > n1 do đó - ∞ < s < 0. Ngoài ra khi quay rotor với tốc độ n bất kì nhưng ngược chiều từ trường n1 lúc đó máy điện không đồng bộ làm việc ở chế độ 5 hãm điện từ 1 < s < + ∞. Như vậy chế độ làm việc của máy điện không đồng bộ có thể biiêủ diễn trên thang độ trượt như hình sau: Người ta chia động cơ không đồng bộ làm hai loại chính là: động cơ rotor dây quấn và động cơ rotor lồng sóc. Với kết cấu đơn giản, làm việc chắc chắn, có đặc tính làm việc tốt, song đặc tính mở máy của động cơ rotor lồng sóc lại không được như của động cơ rotor dây quấn. Tuy nhiên với sự phát triển mạnh mẽ của kỹ thuật điện từ bán dẫn đã cho phép thực hiện thành công các kỹ thuật điều khiển phức tạp đối với loại động cơ rotor lồng sóc. Vì lý do ấy động cơ không đồng bộ rotor lồng sóc ngày nay được sử dụng một cách rộng rãi trong các hệ truyền động công nghiệp. Quan hệ điện từ trong động cơ điện không đồng bộ Ta có phương trình cân bằng điện áp viết cho dây quấn stator: ( ). . 11 1 1 1U = -E + I r + jx (1.1) Trên dây quấn rotor: ( ),. .2 2 2 2 ,. . 2 1 ,. . . 1 2 o . . 1 o m 0 = - E - I r /s + jx E E I I I E I z = + = = − (1.2) r1 và r2’ là điện trở stator và rotor đã quy đổi về mạch stator; x1 và x2’ là điện kháng tản stator và rotor đã quy đổi về mạch stator; Io là dòng điện từ hoá; 6 rm là điện trở từ hoá đặc trưng cho tổn hao sắt từ, xm là điện kháng từ hoá biểu thị sự hỗ cảm giữa stator và rotor; Từ những phương trình nêu trên ta có sơ đồ thay thế và đồ thị vectơ của động cơ không đồng bộ: Hình 1.2 Sơ đồ thay thế động cơ không đồng bộ Công suất điện từ và mô men điện từ ' 2 ' dt 1 Cu1 Fe 1 2 2 ' 2 ' co dt Cu2 1 2 2 s s s I I 1 P P p p m ( ) r / P P p m ( ) r ( )/ = − − = = − = − Mô men điện từ của động cơ: 2' 21 2' 21s ' 2 2 11 s dt )x(x/s)r[(r2ππ /sprUm w PM +++== (1.3) Đặc tính cơ của động cơ không đồng bộ ω = f(M) Từ phương trình mô men của động cơ (1.3) ta xây dựng được đường đặc tính cơ của động cơ đó là quan hệ giữa tốc độ và mô men của động cơ như hình vẽ sau: ω s = 0 M Mth Mt sth n= 0 7 Hình 1.3 Đặc tính cơ của động cơ không đồng bộ Đường đặc tính cơ của động cơ không đồng bộ đạt cực đại tại điểm có: 2' 21 2 1 ' 2 th )x(xr r s ++ = 2 1 th 2 ' 2 s 1 1 1 2 3U M 2 (r r (x x ) )ω = + + + th th th thth 2as s s s s )as(12MM ++ +=⇒ ( 1.4 ) với a = r1/r2. Đối với động cơ có công suất lớn r1<<x1+x2’ lúc này ta có thể bỏ qua r1 nghĩa là r1 = asth= 0 suy ra: ' 2 2 1 th th' ' 1 2 s 1 2 r 3Us M x x 2 (x x )ω= ⇒ =+ + t h t h t h s s s s 2 M M⇒ = + ( 1.5 ) 1.1.2 Động cơ không đồng bộ một pha Động cơ không đồng bộ một pha thường được sử dụng trong các dụng cụ, thiết bị sinh hoạt và trong công nghiệp. Công suất của động cơ từ vài oát đến vài trăm oát và nối vào lưới điện xoay chiều một pha. Stato động cơ 8 không đồng bộ một pha có hai dây quấn: dây quấn làm việc và dây quấn khởi động. Rôto động cơ không đồng bộ một pha thường là lồng sóc. Dây quấn làm việc được nối với lưới điện trong suốt quá trình làm việc, còn dây quấn khởi động chỉ nối vào khi mở máy. Khi tốc độ đạt đến 75 ÷ 85% tốc độ đồng bộ thì dùng bộ ngắt kiểu ly tâm cắt dây quấn khởi động ra khỏi lưới điện. Động cơ công suất nhỏ sau khi mở máy, dây quấn khởi động nối vào lưới. So với động cơ điện không đồng bộ ba pha cùng kích thước, công suất của động cơ điện một pha chỉ bằng 70% công suất của động cơ điện ba pha, nhưng do các động cơ điện một pha có khả năng quá tải thấp nên trên thực tế, trừ động cơ điện kiểu điện dung ra, công suất của động cơ điện một pha bằng 40 ÷50% công suất động cơ điện ba pha. Nguyên lý làm việc của động cơ không đồng bộ một pha: Khi dây quấn làm việc nối với điện áp một pha thì dòng điện trong dây quấn sinh ra từ trường đập mạch Φ. Từ trường này có thể phân thành hai từ trường quay ngược chiều nhau ΦA và ΦB có tốc độ bằng nhau và biên độ bằng một nửa từ trường đập mạch như Hình 1.4a. Như vậy có thể xem động cơ điện một pha tương đương như một động cơ điện ba pha mà dây quấn stato gồm hai phần giống nhau mắc nối tiếp và tạo thành các từ trường quay theo những chiều ngược nhau như Hình 1.4b. Tác dụng của từ trường quay thuận nghịch đó với dòng điện ở roto do chúng sinh ra tạo thành hai mô men ngược nhau MA và MB. Khi động cơ đứng yên (s = 1) thì hai mô men đó bằng nhau và ngược chiều nhau, do đó mô men quay tổng bằng không. 9 Hình 1.4 Nguyên lý làm việc của động cơ điện không đồng bộ một pha Nếu ta quay roto của động cơ điện theo một chiều nào đó (ví dụ quay theo chiều quay của từ trường dây quấn A như Hình b) với tốc độ n thì tần số của sức điện động, dòng điện cảm ứng ở roto do từ trường quay thuận ΦA sinh ra sẽ là: ( ) ( )1 1 12B 1 1 p n - n pn n - nf = = = sf 60 60n ( 1.6 ) Còn đối vớitừ trường quay ngược ΦB thì tần số ấy sẽ là: ( ) ( ) ( )1 1 112A 1 1 p n + n 2n - n - npnf = = - 2 -s f 60 60 n ⎡ ⎤⎢ ⎥⎣ ⎦ ( 1.7 ) ở đây (2 - s) chính là hệ số trượt của roto đối với từ trường ΦB. Như vậy, khi 0 < s < 1 đối với từ trường ΦA máy làm việc ở chế độ động cơ điện, còn đối với từ trường ΦB, do hệ số trượt của roto đối với tử trường đó bằng 2 – s > 1, nên máy sẽ làm việc trong chế độ hãm. Ngược lại, khi 1 < s < 2 tức là khi cho roto quay theo chiều của từ trường dây quấn B thì hệ số trượt đối với từ trường này sẽ là 0 < 2 – s < 1; lúc đó đối với từ trường ΦB, máy làm việc ở chế độ động cơ, còn đối với từ trường ΦA thì ở chế độ hãm. Quy ước rằng các mô men có trị số dương khi chúng tác dụng theo chiều chiều quay của từ trường ΦA, ta sẽ được các đường cong mô men MA và 10 MB của các dây quấn A, B và mô men tổng theo Hình 1.5 ta, đường đặc tính mô men của máy điện không đồng bộ một pha có tính chất đối xứng, cho nên động cơ có thể quay bất cứ chiều nào. Chiều quay thực tế của động cơ điện một pha chủ yếu phụ thuộc vào chiều quay của bộ phận mở máy. Hình1.5 Đặc tính M = f(s) của động cơ điện không đồng bộ một pha 1.1.3 Các phương pháp điều chỉnh tốc độ động cơ không đồng bộ Để điều khiển được dòng năng lượng đưa ra trục động cơ ta cần nghiên cứu và phân tích đặc tính cơ của động cơ ω = f(M) trong đó ω là tốc độ góc của rotor, M là mô men của động cơ. Từ đó có các phương thức để điều chỉnh tốc độ và mô men. Ta có phương trình đặc tính của động cơ không đồng bộ như sau: 2 ' 1 1 2 ' 2 ' 2 s 1 2 1 2 m U pr /sM 2πf [(r r /s) (x x ) = + + + ( 1.8 ) Từ phương trình đặc tính cơ 1.8 ta thấy có nhiều phương pháp điều chỉnh tốc độ động cơ không đồng bộ: điều chỉnh điện áp u1, điều chỉnh điện trở mạch rotor (r2), điều chỉnh công suất trượt, và điều chỉnh tần số nguồn cung cấp cho động cơ bằng bộ biến đổi tần số thiristor hoặc tranzitor… Có nhiều phương pháp điều chỉnh tốc độ động cơ không đồng bộ và mỗi phương pháp đều có nhưng ưu điểm và nhược điểm của nó. Sau đây là một số phương pháp điều chỉnh tốc độ động cơ không đồng bộ: 11 a. Điều chỉnh điện áp đặt vào stator của động cơ Từ biểu thức (1.8) mô men của động cơ tỷ lệ với bình phương điện áp đặt vào stator do đó ta có thể điều chỉnh được mô men quay và tốc độ động cơ bằng cách điều chỉnh giá trị điện áp stator trong đó giữ nguyên tần số nguồn cấp. Ưu điểm của phương pháp này là nó thích hợp với trường hợp mô men tải là hàm tăng của tốc độ, tuy nhiên nó lại không thích hợp với loại động cơ rotor lồng sóc vì sth của loại động cơ này là bé. Khi thực hiện điều chỉnh đối với động cơ rotor dây quấn thì cần nối thêm điện trở phụ vào mạch rotor để mở rộng dải điều chỉnh tốc độ và mô men. b. Điều khiển công suất trượt mạch rotor Trong các trường hợp điều chỉnh tốc độ động cơ không đồng bộ bằng cách làm mềm đặc tính và để nguyên tốc độ không tải lý tưởng thì công suất trượt ΔPs = sPđt được tiêu tán trên điện trở mạch rotor. Ở các hệ thống truyền động công suất lớn, tổn hao này là đáng kể. Vì thế để vừa điều chỉnh được tốc độ truyền động, vừa tận dụng được công suất trượt người ta sử dụng các sơ đồ điều chỉnh công suất trượt, gọi tắt là các sơ đồ nối tầng. Có nhiều phương pháp xây dựng hệ nối tầng. Phương pháp điều khiển công suất trượt mạch rotor thường được áp dụng cho các hệ truyền động công suất lớn vì khi đó việc tiết kiệm điện năng có ý nghĩa lớn nhưng nó có nhược điểm là phạm vi điều chỉnh tốc độ không lớn lắm và mô men của động cơ bị khi tốc độ thấp. Một vấn đề nữa đối với các hệ thống công suất lớn là vấn đề khởi động động cơ, thường dùng điện trở phụ để khởi động động cơ đến vùng tốc độ làm việc sau đó chuyển sang chế độ điều chỉnh công suất trượt. Vì vậy, nên áp dụng phương pháp này cho các hệ truyền động có số lần khởi động, dừng máy và đảo chiều ít nhất. c. Điều khiển điện trở mạch rotor 12 Theo phương trình đặc tính cơ của động cơ không đồng bộ thì ta có thể điều chỉnh tốc độ của động cơ bằng điều chỉnh điện trở mạch rotor, ưu điểm của phương pháp này là dễ điều chỉnh, tuy nhiên nhược điểm của nó là gây tổn hao trên điện trở và mạch chuyển đổi van ở điện áp một chiều. Mặt khác khi điều chỉnh điện trở của mạch rotor thì độ trượt tới hạn cũng thay đổi theo, song trong một dải tốc độ nào đó thì mô men của động cơ tăng lên khi tăng điện trở, nhưng trong dải khác mô men của động cơ lại giảm đi. Trong phương pháp này nếu giữ dòng điện rotor không đổi thì mô men cũng không đổi và không phụ thuộc tốc độ động cơ, vì vậy có thể áp dụng phương pháp này cho hệ truyền động có mô men không đổi. d. Điều khiển tần số điện áp nguồn cung cấp cho động cơ Với mục đích mở rộng dải điều chỉnh và nâng cao chất lượng động hệ thống điều chỉnh tốc độ động cơ xoay chiều nói chung và động cơ không đồng bộ nói riêng, phương pháp điều chỉnh tần số động cơ không đồng bộ cho phép mở rộng phạm vi sử dụng động cơ không đồng bộ trong nhiều nghành công nghiệp. Trước hết đó là ứng dụng cho những thiết bị cần thay đổi tốc độ nhiều động cơ cùng một lúc như các hệ truyền động của các nhóm máy dệt, băng tải, băng truyền...Phương pháp này còn được áp dụng trong cả những thiết bị đơn lẻ nhất là những thiết bị có công nghệ yêu cầu tốc độ làm việc cao như máy ly tâm, máy mài, máy đánh bóng... Đặc biệt các hệ thống điều chỉnh tốc độ động cơ bằng các bộ biến đổi tần số nguồn cung cấp cho động cơ không đồng bộ rotor lồng sóc có cấu tạo đơn giản, vững chắc, giá thành rẻ và làm việc trong những môi trường nặng nề, tin cậy. Đó là những yêu cầu cần thiết trong hệ thống công nghiệp đang ngày càng phát triển. Trong hệ điều khiển tần số động cơ thì thông số điều khiển là tần số của điện áp đặt và stator. Nếu phụ tải có mô men là hằng số thì ta phải điều khiển cả điện áp để đạt được quy luật U/f = const. Nếu phụ tải có công suất là hằng số thì ta giữ nguyên điện áp đặt vào stator nhưng chỉ làm việc với dải tần số 13 f > fs. Ưu điểm nổi bật của phương pháp này mà các phương pháp khác không có được là có thể điều khiển động cơ phù hợp với mọi loại tải và phát huy được dải điều chỉnh ở cả hai vùng tốc độ dưới và trên định mức, phù hợp với các hệ truyền động yêu cầu tốc độ cao. Song phương pháp này có nhược điểm là hệ thống điều khiển phức tạp. Tuy nhiên, với ứngdụng của kỹ thuật vi xử lý tín hiệu đã cho phép giải quyết các thuật toán phức tạp điều khiển động cơ trong điều kiện thời gian thực với chất lượng điều khiển cao. Chính vì vậy phương pháp này ngày càng được quan tâm và ứng dụng mạnh mẽ trong các hệ thống công nghiệp. e. Điều chỉnh tốc độ động cơ không đồng bộ bằng cách thay đổi số đôi cực Trong nhiều trường hợp các cơ cấu sản xuất không yêu cầu phải điều chỉnh tốc độ bằng phẳng mà chỉ cần điều chỉnh có cấp. Đối với động cơ không đồng bộ ba pha, ta có tốc độ của từ trường quay: 11 60fn = p (1.9) n = n1(1 – s) (1.10) Do đó khi thay đổi số đôi cực thì n1 sẽ thay đổi, vì vậy tốc độ của động cơ sẽ thay đổi. Để thay đổi số đôi cực p ta thay đổi cách đấu dây và cũng là cách thay đổi chiều dòng điện đi trong các cuộn dây mỗi pha stato động cơ. Khi thay đổi số đôi cực chú ý rằng số đôi cực ở stato và roto là như nhau. Nghĩa là khi thay đổi số đôi cực ở stato thì ở roto cũng phải thay đổi theo nên rất khó thực hiện cho động cơ roto dây quấn. Phương pháp này chủ yếu dùng cho động cơ không đồng bộ roto lồng sóc và loại động cơ này có khả năng tự biến đổi số đôi cực ở roto để phù hợp với số đôi cực ở stato. Đối với động cơ có nhiều cấp độ, mỗi pha stato phải có ít nhất là hai nhóm bối dây trở nên hoàn toàn giống nhau. Do đó càng nhiều cấp độ thì kích thước, trọng lượng và giá thành càng cao vì vậy trong thực tế thường dùng tối đa là bốn cấp độ. 14 Kết luận Từ các phương pháp trên ta thấy phương pháp điều chỉnh tốc độ động cơ bằng biến tần là phương pháp có nhiều ưu điểm hơn cả. Vì nó có thể điều khiển được nhiều loại động cơ khác nhau trong đó có cả động cơ điện một chiều, dải điều chỉnh tốc độ rộng và liên tục. Nó còn được áp dụng nhiều trong các hệ truyền động chất lượng cao. Hơn nữa phương pháp điều khiển tốc độ bằng biến tần điều khiển tốc độ của động cơ xoay chiều một pha đơn giản và thích hợp nhất. Nên phương pháp này sẽ được áp dụng trong đề tài này để điều khiển tốc độ gió cho hệ thống sấy nông sản trong phòng thí nghiệm. 1.2 Điều chỉnh tốc độ quay động cơ bằng biến tần Bộ biến tần có nhiệm vụ biến đổi điện áp lưới với tần số công nghiệp (ở một số trường hợp là điện áp mạng hay nguồn độc lập tần số cao) thành điện áp (hoặc dòng điện) biến đổi nhiều pha có biên độ, tần số và số pha có thể thay đổi được trong phạm vi cho phép. Tốc độ động cơ không đồng bộ: 1 1 60fn n (1 s) (1 s) p = − = − (1.11) Trong đó f1 là tần số nguồn cung cấp; s là hệ số trượt của động cơ. Khi hệ số trượt thay đổi ít thì tốc độ của động cơ n tỷ lên thuận với f1. Vì vậy ta có thể điều chỉnh tốc độ bằng cách thay đổi tần số nguồn. Riêng đối với động cơ rotor lồng sóc chỉ có thể điều chỉnh tần số mới thực hiện điều chỉnh trơn tốc độ trong phạm vi rộng. Đối với động cơ không đồng bộ nếu bỏ qua điện áp rơi trên điện trở và điện cảm dây quấn stator ta có: 1 1 dq 1 1 1 1 U E 4,44k W f Uk f φ φ = ≈ ⇒ = 15 với: dq 1 1k 4,44k W = trong đó: W1 là số vòng dây stator; Kdq hệ số dây quấn Từ biểu thức trên ta thấy đồng thời với việc điều chỉnh tần số thì ta phải điều chỉnh cả điện áp nguồn cung cấp. Bởi vì nếu điều chỉnh tần số mà giữ nguyên điện áp thì: Nếu giảm f1 thì φ của động cơ tăng lên làm cho mạch từ của động cơ bị bão hoà và dòng điện từ hoá Iμ lớn lên, tổn thất sắt trong lõi thép stator lớn làm cho động cơ phát nóng dữ dội, đôi khi có thể gây cháy động cơ. Nếu tăng f1 làm cho từ thông φ của động cơ giảm xuống và nếu động cơ có tải với mô men không đổi thì dòng điện rotor Ir tăng lên dẫn đến trong trường hợp này dây quấn rotor bị quá tải, cho mô men cho phép và khả năng quá tải cho phép của động cơ bị giảm đi. Để phát huy tối đa mọi khả năng của động cơ khi điều chỉnh tốc độ bằng bộ biến tần người ta phải tiến hành điều chỉnh cả điện áp theo một hàm cho phù hợp với phụ tải. Việc điều khiển này có thể được thực hiện thông qua hệ thống kín khi đó nhờ các mạch phản hồi điện áp ứng với một tần số cho trước nào đó sẽ biến đổi theo phụ tải và các quy luật tải khác ta có các quy luật điều khiển. Nguyên tắc chung của các bộ biến đổi tần số là dùng khoá điện tử công suất điều khiển là transitor hay thyristor (gọi là các khoá điện tử). Thực chất của các nguyên tắc này là ở việc tổ chức các mối liên kết của các phần tử chủ yếu của bộ biến đổi và đóng cắt chúng bằng những quy luật (thuật toán) nào đó theo hàm thời gian để điều chỉnh dòng năng lượng ở đầu ra bộ biến đổi với tần số mong muốn. 16 Các bộ biến đổi tần số dùng khoá điện tử có thể chia thành ba loại theo phương pháp chuyển mạch dòng điện giữa các khoá điện tử. 1- Bộ biến tần dùng khóa điện tử với chuyển mạch tự nhiên. 2- Bộ biến tần dùng van bán dẫn với chuyển mạch ngoài (chuyển mạch nhân tạo và chuyển mạch cưỡng bức). 3- Bộ biến tần dùng khoá điện tử với chuyển mạch hỗn hợp. Mặt khác, tùy theo cách liên hệ của phụ tải với năng lượng nguồn, chính xác hơn là theo kiểu biến đổi trung gian của điện áp sơ cấp (điện áp lưới), người ta chia ra ba loại bộ biến đổi tần số dùng khoá điện tử: 1- Các bộ biến tần có khâu trung gian dòng điện một chiều (các bộ biến đổi tần số kiểu nghịch lưu). 2- Các bộ biến tần trực tiếp (không có khâu trung gian dòng điện một chiều và các mạch vòng khác). 3- Các bộ biến tần có khâu trung gian dòng điện xoay chiều tần số cao. 1.3 Ý nghĩa của việc dùng biến tần để điều khiển tốc độ gió của hệ thống sấy Việc điều chỉnh tốc độ gió trong hệ thống thí nghiệm sấy được chuyển về việc điều khiển tốc độ động cơ quạt gió. Giữa tốc độ gió và tốc độ động cơ có quan hệ với nhau theo một hàm nào đó, hàm này sẽ được xác định bằng thực nghiệm. Tốc độ gió trong hệ thống thí nghiệm sấy cần một dải tốc độ và ở mỗi tốc độ thì cần ổn định chúng. Việc sử dụng biến tần là thích hợp vì điều chỉnh tốc độ được liên tục, dải điều chỉnh rộng và việc điều chỉnh đơn giản. 17 CHƯƠNG 2 CƠ SỞ LÝ THUYẾT BIẾN TẦN 2.1 Biến tần áp 2.1.1 Định nghĩa chung về biến tần Biến tần là các bộ biến đổi điện dùng để biến đổi nguồn điện áp với các thông số không đổi, thành nguồn điện (nguồn áp hoặc nguồn dòng) với tần số có thể thay đổi được. Thông thường biến tần làm việc với nguồn điện đầu vào là lưới điện nhưng về nguyên tắc chung thì biến tần có thể làm việc với bất kỳ nguồn điện áp xoay chiều nào. Bộ biến tần phải thoả mãn các yêu cầu sau: - Có khả năng điều chỉnh tần số theo giá trị tốc độ đặt mong muốn. - Có khả năng điều chỉnh điện áp theo tần số để duy trì từ thông khe hở không đổi trong vùng điều chỉnh mômen không đổi. - Có khă năng cung cấp dòng điện định mức ở mọi tần số. Tuỳ theo yêu cầu kinh tế - kỹ thuật mà có thể xác định được cấu trúc của hệ biến tần động cơ. Về cơ bản chúng ta có thể chia thành hai loại : Biến tần trực tiếp, biến tần gián tiếp. Biến tần trực tiếp Được xây dựng trên cơ sở các bộ chỉnh lưu đảo chiều có điều khiển (bộ bi

Các file đính kèm theo tài liệu này:

  • pdf53.pdf
Tài liệu liên quan