Thiết kế hệ thống truyền thông yêu cầu phải hiểu biết về dạng tín hiệu vật lý của thông tin và khoảng cách mà nó phải truyền đi.
Một sơ đồ truyền tin sẽ được thiết kế với số lượng và chất lượng mong muốn.
Khía cạnh số lượng bao gồm việc xác định tổng số, tốc độ, và hiệu quả truyền qua một kênh dải tần hữu hạn.
Khía cạnh chất lượng bao gồm việc xác định một cách chính xác số lượng tin được truyền đi trên cơ sở tin nhận được.
108 trang |
Chia sẻ: Mr Hưng | Lượt xem: 897 | Lượt tải: 0
Bạn đang xem trước 20 trang nội dung tài liệu Điện tử cho công nghệ thông tin - Chương 4: Điều chế và hệ thống điều chế biên độ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ight (c) 8/2009 by KTMT76AGC và dải độngỞ ví dụ trên chúng ta đã thiết lập một sơ đồ khối đầy đủ để đảm bảo rằng có khả năng giải điều chế một tín hiệu rất yếu - 87 dBm. Vấn đề tiếp theo là điều gì sẽ xảy ra nếu tín hiệu nhận được mạnh hơn. Tuy nhiên việc thay đổi tỷ số điều chế là không có nhiều ý nghĩa.Copyright (c) 8/2009 by KTMT77AGC và dải độngCần xem xét những hậu quả của sự khuếch đại lên đáng kể mức tín hiệu - 87 dBm. Trong một hệ thống điều chế biên độ, hậu quả này có thể làm méo tín hiệu thu được do bộ khuếch đại IF trở nên quá tải và cắt biên độ của hình bao AM. Một tín hiệu AM mà bị cắt biên độ như vậy trong một hệ thống IF không tuyến tính được minh họa trong hình cùng với tín hiệu đầu ra giải điều chế đã bị méo.Hiển nhiên khi đầu ra âm thanh bị cắt từ bộ giải điều chế phát ra loa sẽ bị méo khi qua bộ khuếch đại.Cuối cùng, nếu tín hiệu nhận được là rất lớn, tất cả các biến điệu của biên độ có thể bị cắt bỏ gây ra sự mất mát thông tin. Điều này được minh họa trong hìnhCopyright (c) 8/2009 by KTMT78AGC và dải độngCopyright (c) 8/2009 by KTMT79AGC và dải độngTại sao một sự biến đổi cường độ lớn như vậy của tín hiệu lại có thể xuất hiện? Một ví dụ để tưởng tượng là máy thu của chúng ta đang nằm trong một ô tô chạy xuyên qua thành phố. Những tòa nhà lớn và những con đường ngầm sẽ làm suy giảm mạnh mẽ tín hiệu. Sự biến đổi độ lớn của tín hiệu như vậy đòi hỏi người thiết kế máy thu xây dựng một bộ điều khiển tự động các mức của tín hiệu. Tỷ số giữa cường độ lớn nhất và nhỏ nhất của tín hiệu mà một máy thu vẫn hoạt động bình thường gọi là dải động hệ thống ( system dynamic range ).Copyright (c) 8/2009 by KTMT80AGC và dải độngMột hệ thống điều biến biên độ hoạt động trong một môi trường có dải động lớn cần phải được thiết kế để duy trì sự tuyến tính trong các bộ khuếch đại IF bằng cách tự động điều khiển hệ số khuếch đại ( AGC- Automatic Gain Control), có tác dụng giữ cho tín hiệu IF ở mức không đổi tại đầu ra.Copyright (c) 8/2009 by KTMT81AGC và dải độngCopyright (c) 8/2009 by KTMT82AGC và dải độngHệ số khuếch đại của tầng Emitter chung là Av = - RC/re = - RC.Ie/0.026, tỷ lệ với dòng ở cực C ( collector) và dòng collector tỷ lệ theo hàm e mũ với điện áp phân cực B-E. Điều này được minh họa trong hình dưới, khi điện áp phân cực dưới điện áp cắt VCi thì IC bằng 0. Với transistor lưỡng cực silic, VCi = 0.55V. Trên điểm này, hệ số khuếch đại ( hay IC) tăng rất nhanh khi điện áp B-E tăng tới 0.6V, và thông thường transistor bão hòa tại VBE > 0.8 V.Copyright (c) 8/2009 by KTMT83AGC và dải độngCopyright (c) 8/2009 by KTMT84Nhiễu máy thu.Trong số rất nhiều loại nhiễu đã xét, phần lớn nhiễu xuất hiện ở đầu vào các máy thu bao gồm nhiễu nhiệt và nhiễu vạch. Nhiễu vạch xuất hiện với dòng điện phân cực trong các thiết bị như điốt, transistor và các đèn điện tử chân không.Công suất nhiễu nhiệt của máy thu chỉ tỷ lệ với nhiệt độ và độ rộng dải tần. Điều này được chỉ ra trong phương trình Nth = kTB (1)Copyright (c) 8/2009 by KTMT85Nhiễu máy thuKhi tính toán công suất máy thu theo dBm, sẽ rất thuận tiện khi biểu diễn nhiễu nhiệt theo dBm. Điều này được suy ra từ phương trình (1) như sau:10log(kTB) = 10 logkT + 10 log BVới k = 1.38x10-23 W.s/K và T coi như bằng 290 K, chúng ta thu được phương trình như sau:Nth(dBm) = - 174dBm +10logB Copyright (c) 8/2009 by KTMT86Nhiễu máy thu.Nhiễu trong mạch được xác định bởi một transistor hoặc một điốt có sẵn trong tài liệu của nhà sản xuất và được gọi là đặc tính nhiễu của thiết bị.Đặc tính nhiễu được tính theo đơn vị dB và cho ta biết số lượng nhiễu được tạo ra trong thiết bị cùng với nhiễu nhiệt kTB ( nhiệt độ coi như bằng 290 K). Do vậy, tổng công suất nhiễu của máy thu, tính theo dBm, của nhiễu nhiệt và đặc tính nhiễu là :N = (kTB)(NR)hoặc theo dBmN(dBm) = ( - 174 dBm + 10logB) + NF(dB) với NF là tổng nhiễu vạch của hệ thống.Copyright (c) 8/2009 by KTMT87Tỉ số tín hiệu trên nhiễu (S/N)Chất lượng của thông tin truyền qua một hệ thống truyền tin phụ thuộc vào lượng nhiễu của hệ thống.Một hệ thống thông tin quen thuộc đối với chúng ta là ti vi. Khi tín hiệu nhận được từ khoảng cách truyền xa là rất yếu, nhiễu có thể làm giảm chất lượng hình ảnh (nhận được từ tín hiệu video) và âm thanh (nhận được từ tín hiệu audio). Thống kê cho thấy để hình ảnh có chất lượng tốt đòi hỏi tỉ lệ tín hiệu – nhiễu (S/N) phải lớn hơn 40 dB. Điều này có nghĩa là cường độ tín hiệu S phải lớn hơn cường độ tín hiệu nhiễu N : 40 dBCopyright (c) 8/2009 by KTMT88Tỉ số tín hiệu trên nhiễu (S/N)Một chiếc ti vi chuẩn (typical) nhận tín hiệu có nhiễu 12 dB và dải thông IF 6 MHz. Do đó, cường độ nhiễu đưa tới đầu vào là N (dBm) = (-174 dBm + 10 log 6 * 106 Hz) = -94.2 dBm. Tương đương với 380 pW cường độ tín hiệu, hay 337 V với 300 trở kháng đầu vào.Copyright (c) 8/2009 by KTMT89Tỉ số tín hiệu trên nhiễu (S/N)Với một cách tính khác và đầy đủ hơn về S/N, nếu chỉ nhận được 100 V ở ăng ten TV 300 , thìS = V2/R = (100 V)2/300 = 33.3 pW. Tức là S (dBm) = 10 log (33.3 * 10-12 W 1mW ) = -74.8 dBm.Do vậy S/N = S (dBm) – N (dBm) = -74.8 dBm – (-94.2 dBm) = 19.4 dB. Kết quả này cũng tức là sẽ có một tín hiệu video rất nhiễu ở đầu ra – hình bị “muỗi”Copyright (c) 8/2009 by KTMT90Nguồn gốc của nhiễu hình tương đương Nguồn gốc của nhiễu đối với một hệ thống khuếch đại nhiều tầng thường được nhìn nhận theo hai bước : Thứ nhất, trong các loại nhiễu, dùng biểu thức cho số lượng công suất nhiễu trong mỗi tầng khuếch đại cộng với nhiễu nhiệt xuất hiện tại đầu vào của bộ khuếch đại. Thứ hai, tính nhiễu trong khuếch đại nhiều tầng.Copyright (c) 8/2009 by KTMT91Nguồn gốc của nhiễu hình tương đươngVới bộ khuếch đại như hình dưới, đặt hệ số khuếch đại công suất của bộ khuếch đại là Ga , tỉ số công suất nhiễu là NRa và đặt Na là công suất nhiễu nội bộ đo được ở đầu ra nếu hoàn toàn không có nhiễu ở đầu vào.Tất nhiên, luôn luôn có nhiễu nhiệt Nth = kTB xuất hiện tại đầu vào của khuếch đại do tính chất của bán dẫn tại nhiệt độ T có công suất Nth wat đo được ở dải thông B. Do đó, công suất nhiễu tổng cộng tại đầu ra khuếch đại là: N0 = NthGa + Na trong đó công suất nhiễu nhiệt đầu vào được khuếch đại với hệ số khuếch đại công suất Ga.Copyright (c) 8/2009 by KTMT92Nguồn gốc của nhiễu hình tương đươngTheo định nghĩa nhiễu NF là NF = 10 log NR Trong đó NR = Do vậy NRα = trong đó, tỉ số công suất nhiễu tổng cộng ở đầu ra quy đổi tại đầu vào (bằng cách chia cho hệ số khếch đại công suất) với công suất nhiễu nhiệt đầu vào cho ta tỉ số nhiễu khuyếch đại . ư NRαCopyright (c) 8/2009 by KTMT93Vế phải của hệ thức có thể viết như là tổng của các hệ thức: NRα= = 1 + NRα - 1 =Từ đó chúng ta có thể thấy rằng công suất nhiễu cộng với bất kỳ nhiễu đầu vào có thể được viết trong khuôn khổ của tỉ lệ khuyếch đại nhiễu như sau: Nα = NthGα(NRα – 1) Nα = NthGαNRα – NthGαCopyright (c) 8/2009 by KTMT94Nguồn gốc của nhiễu hình tương đươngTính toán đặc tính nhiễu của hai tầng khuếch đại liên tiếpCông suất nhiễu tổng cộng tại đầu ra của khuếch đại 1 kí hiệu N01 được tínhNo1 = NthG1 + [NthG1(NR1 – 1)]Công suất nhiễu N01, được khuyếch đại bởi G2 và cộng với lượng nhiễu N02 = NthG2(NR2 – 1) của bộ khuếch đại 2 ta có: No2 = NthG2(NR2 - 1) + G2{NthG1 + [NthG1(NR1 – 1)]} = NthG1G2 + NthG1G2(NR1 – 1) + NthG2(NR2 -1) Copyright (c) 8/2009 by KTMT95Nguồn gốc của nhiễu hình tương đươngMở rộng hệ thức NRα = cho mạch khuếch đại 2 tầngƯ NRsys = = 1 + (NR1 - 1) + (NR2 - 1) NRsys = NR1 + Copyright (c) 8/2009 by KTMT96Nguồn gốc của nhiễu hình tương đươngMở rộng cho mạch khuếch đại nhiều tầng NR = NR1 + Copyright (c) 8/2009 by KTMT97Nguồn gốc của nhiễu hình tương đươngMở rộng băng tầnTrong máy thu, trước khi giải điều chế, có một vấn đề thực tế làm hạn chế kết quả cải thiện bằng dải tần hẹp. Đó là, rất khó có thể xây dựng một bộ lọc dải thông hẹp ổn định. Ví dụ, nếu chúng ta thu được một tín hiệu trong băng tần AM tiêu chuẩn tại tần số 1.5 MHz, để xây dựng một bộ lọc thông dải đầu vào có băng thông 10 kHz yêu cầu một hệ số chất lượng mạch tương đương Q = 1.5MHz/10 kHz = 150. Điều này rất khó thực hiện được. Tuy vậy, rất dễ dàng thiết kế bộ khuyếch đại IF tại tần số fIF = 455 kHz, Q = 455 kHz/ 10 kHz = 45.5Copyright (c) 8/2009 by KTMT98Mở rộng băng tầnCopyright (c) 8/2009 by KTMT99Yêu cầu bắt buộc của hệ thống là mạch phải có băng thông đủ rộng tương đương dải phổ tín hiệu nếu không muốn công suất tín hiệu và phổ bị giảm đi như mô tả trong hình. Cũng vậy, nếu bộ lọc là không đối xứng sẽ xuất hiện sự méo tín hiệu .Giải pháp tốt nhất là sự dụng bộ lọc nhiều tầng tại IF sẽ không gây méo thông tin (biên tần)Copyright (c) 8/2009 by KTMT100Thông thường S/N được tính toán tại đầu vào RF của máy thu, sử dụng băng thông RF để xác định công suất nhiễu. Tuy nhiên, hầu hết các hệ thống IF có dải tần hẹp hơn là RF, và kết quả là công suất nhiễu sẽ tương ứng thấp hơn trong IF. Phương pháp đơn giản nhất để nhận được tỷ số S/N cho trước là sử dụng dải tần IF như là dải tần nhiễu để tính toán Nth = kTB. Một phương pháp khác là thay đổi dộ rông băng thông, hay nhân tố cải thiện băng tần nhiễu, BI.Copyright (c) 8/2009 by KTMT101Nhân tố cải thiện băng tần nhiễu là tỉ số cuả công suất nhiễu được giảm bởi sự giảm băng thông của mạch. Ví dụ, giả sử một máy thu có băng thông RF là 5 MHz và băng thông IF là 200 kHz. Băng tần nhiễu cải thiện là:BI(dB) = 10 log (BRF+/ BIF)Kết quả, S/N trong khuếch đại IF sẽ tốt hơn 14 dB so với S/N ở đầu vào RF (nếu bỏ qua đặc tính nhiễu).Copyright (c) 8/2009 by KTMT102Ví dụ Cho NF1 = 2 dB, NR = 1.6, NF2,3 =6 dB, NR = 4.0, NF4,5 = 63.1, Ap1 = 8 dB, G1 = 6.3, Ap2 = 12 dB, G2 = 15.8, Ap3 = -6 dB, G3 = 0.25, Ap4,5 = 20 dB, G4,5 = 100.Tính toán hệ thống NF(dB).Nếu băng thông RF là 5 MHz và băng thông IF là 200 kHz, hãy xác định S/N (dB) trước tách sóng của máy thu với tín hiệu đầu vào -80 dBm.Copyright (c) 8/2009 by KTMT103Ví dụTừ hệ thức NR = NR1 +Copyright (c) 8/2009 by KTMT104Ví dụTín hiệu nhận được -80 dBm. Công suất nhiễu nhiệt tại đầu vào là (từ hệ thức 4-24) Nth = -174 dBm + 10 log 5*106 = -105 dBm. Vì vậy, (S/N)i dB = -80 dBm - (-107 dBm) = +27 dB.S/N đầu vào được giảm bởi nhiễu hệ thống (NF = 6.7 dB) nhưng được tăng bởi hiệu ứng giảm nhiễu ở dải tần hẹp IF (BI). Từ hệ thức 4-42, cải thiện nhiễu dải tần hẹp sẽ là BI (dB) = 10 log (5000/200) = 14 dB. Kết quả cuối cùng là: (S/N)o dB = (S/N)i dB - NF (dB) + BI (dB) = +27 dB - 6.7 dB + 14 dB = 34.3 dB Copyright (c) 8/2009 by KTMT105Ví dụTỉ lệ tín hiệu - trên - nhiễu tại đầu vào bộ giải điều chế (+34.3 dB trong ví dụ) có thể là một kết quả tính toán hệ thống tới hạn. Điều này đặc biệt đúng với các bộ điều chế FM bởi vì các bộ giải điều chế FM điển hình yêu cầu mức ngưỡng cho S/N đầu vào nhỏ hơn + 13 dB. Copyright (c) 8/2009 by KTMT106Thu hẹp băng thôngKhi thiết kế các bộ khuyếch đại IF và khi tính toán băng thông của hệ thống nhiều tầng, nhớ rằng đáp ứng tần số của mỗi tầng có ảnh hưởng đến dải tần chung. Trong trường hợp đơn giản được tính toán từ BWT = BW1 dải tần của mỗi tầng, n:số tầng với băng thông BW1Do đó, với ba tầng khuếch đại, mỗi tầng có BW1 = 10 kHz, dải tần 3 - dB là BW = 10 kHz = 5.09 kHz.Copyright (c) 8/2009 by KTMT107Thu hẹp băng thôngCông thức này được áp dụng cho mạch điều hưởng đơn, hệ thống khuếch đại được điều hưởng đồng bộ.Việc điều hưởng đồng bộ là mỗi tầng khuếch đại IF được điều hưởng tới cùng một tần số. Hiện nay, đôi khi người ta cũng sử dụng điều hưởng các tầng ở các tần số khác nhau để có băng thông rộng hơn so với các tầng điều hưởng đồng bộ.Copyright (c) 8/2009 by KTMT108
Các file đính kèm theo tài liệu này:
- chuong_4_5412.pptx