Trong những năm gần đây, các dịch vụ viễn thông phát triển hết sức nhanh chóng đã tạo ra nhu cầu to lớn cho các hệ thống truyền dẫn thông tin. Mặc dù các yêu cầu kỹ thuật cho các dịch vụ này là rất cao song cần có các giải pháp thích hợp để thực hiện. Orthogonal Frequency Division Multiplexing (OFDM) là một phương pháp điều chế cho phép truyền dữ liệu tốc độ cao trong các kênh truyền chất lượng thấp. OFDM đã được sử dụng trong phát thanh truyền hình số, đường dây thuê bao số không đối xứng, mạng cục bộ không dây. Với các ưu điểm của mình, OFDM đang tiếp tục được nghiên cứu và ứng dụng trong các lĩnh vực khác như truyền thông qua đường dây tải điện, thông tin di động, Wireless ATM
OFDM là nằm trong lớp các kỹ thuật điều chế đa song mang. Kỹ thuật này phân chia dải tần cho phép thành rất nhiều dải tần con với các sóng mang khác nhau, mỗi sóng mang này được điều chế để truyền một dòng dữ liệu tốc độ thấp. Tập hợp các dòng dữ liệu tốc độ thấp này chính là dòng dữ liệu tốc độ cao cần truyền tải. Các sóng mang trong kỹ thuật điều chế đa sóng mang là họ sóng mang trực giao. Điều này cho phép ghép chồng phổ giữa các sóng mang do đó sử dụng giải thông một cách có hiệu quả. Ngoài ra sử dụng họ sóng mang trực giao còn mang lại nhiều lợi thế kỹ thuật khác, do đó các hệ thống điều chế đa sóng mang đều sử dụng họ sóng mang đa trực giao và gọi chung là ghép kênh theo tần số trực giao OFDM.
Khái niệm truyền dữ liệu song song bằng cách ghép kênh phân chia theo tần số (FDM) được giới thiệu từ giữa những năm 60. Ý tưởng là sử dụng các luồng dữ liệu song song và FDM với các kênh con gối lên nhau để không phải sử dụng bộ cân bằng tốc độ cao và loại bỏ nhiễu xung, méo đa đường và tận dụng toàn bộ lượng băng thông. Ứng dụng đầu tiên là trong quân sự, trong lĩnh vực viễn thông thuật ngữ đa tần rời rạc (DMT – Discrete Multi-tone), điều chế đa kênh và điều chế đa sóng mang (MCM) được sử dụng rộng rãi và còn được gọi cách khác là OFDM. Vào những năm 80, OFDM được nghiên cứu sử dụng trong các modem tốc độ cao, trong di động số và ghi âm mật độ cao. Một trong những hệ thống sử dụng một tần số pilot cho sóng mang ổn định và điều khiển tần số đồng hồ, mã hóa trellis được thực hiện. Nhiều modem tốc độ cao được phát triển cho mạng điện thoại. Vào những năm 90, OFDM được sử dụng trong truyền dữ liệu băng rộng qua kênh vô tuyến di động FM, đường dây thuê bao số tốc độ cao (HDSL, 1.6Mb/s), đường dây thuê bao số bất đối xứng (ADSL, 1.536 Mb/s), đường dây thuê bao số tốc độ rất cao (VHDSL, 100 Mb/s), quảng bá audio số (DAB) và HDTV.
Bên cạnh những lợi ích rất lớn của OFDM, thì mặt hạn chế của nó là vấn đề lỗi đồng bộ (SFO,CFO) và kênh truyền biến đổi theo thời gian. Hoạt động của OFDM rất nhạy với lỗi đồng bộ ở bộ nhận. Lỗi đồng bộ tạo ra nhiễu giao thoa liên sóng mang (ICI), nó sẽ phá hủy tính trực giao giữa các sóng mang OFDM. Mà kỹ thuật OFDM chỉ phát huy được những ưu điểm của nó khi tính trực giao được duy trì. Vì vậy có rất nhiều nghiên cứu tập trung vào nó để nâng cao chất lượng hoạt động của nó. Trong đó có một phương pháp rất hữu hiệu là Kết hợp ước lượng kênh và đồng bộ sử dụng Pilot Tone cùng với kỹ thuật giảm ICI cho hệ thống OFDM. Phương pháp này ước lượng lệch tần số sóng mang và bù SFO, CFO trong miền thời gian làm giảm ICI. Khi ICI giảm, tính trực giao của kỹ thuật OFDM sẽ được duy trì tốt và các ưu điểm của kỹ thuật được phát huy mạnh mẽ. Ta có thể thấy rằng phương pháp này là một phần quan trọng trong kỹ thuật OFDM. Đồ án này tập trung nghiên cứu sâu về phương pháp hữu hiệu này.
Nội dung trình bày đồ án bao gồm:
Chương 1: Giới thiệu tổng quan về OFDM
Chương 2: Giới thiệu các ứng dụng của OFDM
Chương 3: Trình bày các hạn chế gây ảnh hưởng đến OFDM
91 trang |
Chia sẻ: oanh_nt | Lượt xem: 1462 | Lượt tải: 2
Bạn đang xem trước 20 trang nội dung tài liệu Đề tài Orthogonal Frequency Divition Multiplexing OFDM, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC
Nội dung Trang
MỤC LỤC 2
DANH MỤC HÌNH VẼ 5
DANH MỤC BẢNG 8
DANH MỤC CÁC TỪ VIẾT TẮT 9
MỞ ĐẦU 12
CHƯƠNG 1: GIỚI THIỆU TỔNG QUAN VỀ OFDM 14
Giới thiệu chương 14
Các nguyên lý cơ bản của OFDM 14
Đơn sóng mang (Single Carrier) 19
Đa sóng mang (Multi-Carrier) 20
Sự trực giao (Orthogonal) 22
1.5.1 Trực giao miền tần số 23
1.5.2 Mô tả toán học của OFDM 24
Các kỹ thuật điều chế trong OFDM 30
Điều chế BPSK 30
Điều chế QPSK 32
Điều chế QAM 34
Mã Gray 35
CHƯƠNG 2: ƯU NHƯỢC ĐIỂM VÀ HẠN CHẾ CỦA KỸ THUẬT
OFDM 38
2.1 Ưu điểm của kỹ thuật OFDM 38
2.2 Nhược điểm của kỹ thuật OFDM 39
2.3 Những hạn chế của kỹ thuật OFDM 39
2.3.1 Tín hiệu thu lý tưởng 39
2.3.2 Lệch tần số sóng mang (CFO: Carrier Frequency Offset) …..40
2.3.3 Lệch định thời ký tự (TO: Timing Offset) …..42
2.3.4 Lệch tần số lấy mẫu(SFO:Sampling Clock Frequency Offset) …..43
2.3.5 Nhiễu pha (PHN: Phase Noise) …..44
Chương 3 : ỨNG DỤNG CỦA OFDM…………………………………………46
3.1. Phát thanh quảng bá số (DAB) …………………………………………………………..46
3.2 . Hệ thống truyền hình số quảng bá (DVB)………………………………. ...49
3.2.1 Tổng quan về DVB_T………………………………………………..50
3.2.2 Tính trực giao của các sóng mang OFDM trong DVB_T……………53
3.2.3 Biến đổi IFFT và điều chế tín hiệu trong DVB-T……………………53
3.2.4. Lựa chọn điều chế cơ sở……………………………………………..54
3.2.5. Số lượng, vị trí và nhiệm vụ của các sóng mang………………. …...55
3.2.6. Chèn khoảng thời gian bảo vệ………………………………............58
3.2.7. Tổng vận tốc dòng dữ liệu của máy phát số DVB-T ……………….60
3.2.8. Điện thoại di động trong hệ thống truyền hình số mặt đất DVB-T ... 60
3.2.9. Hệ thống quảng bá truyền hình số vệ tinh DVB-S………………….61
3.2.10. Hệ thống quảng bá truyền hình số hữu tuyến DVB-C………….62
3.3 Kỹ thuật OFDM trong Winmax…………………………………………... 64
3.3.1 Giới thiệu kỹ thuật OFDMA ………………………………………. 64
3.3.2 Đặc điểm ………………………………………………………….. 65
3.3.3 OFDMA nhảy tần…………………………………………………66
3.3.4 Hệ thống OFDMA……………………………………………….. 68
3.3.4.1 Chèn chuỗi dẫn đường ở miền tần số và miền thời gian……72
3.3.4.2 Điều chế thích nghi…………………………………………73
3.3.4.3 Các kĩ thuật sửa lỗi…………………………………………74
3.3.4.3.1 Mã hóa LDPC (Low-Density-Parity-Check)……...75
3.3.4.3.2 Mã hoá Reed-Solomon…………………………..78
3.3.5 Điều khiển công suất………………………………………………80
3.4 Dịch vụ quảng bá số mặt đất ISDB-T ( Integrated Services Digital Broadcasting – Terrestrial )……………………………………………………….81
3.5 Hệ thống HiperLAN/2 (IEEE802.11a) …………………………………….84
3.6 Thế hệ thông tin di động 4G…………………………………………………84
3.7 Hệ thống DRM………………………………………………………………..85
3.7 Những ứng dụng khác……………………………………………………….87
3.7.1 IEEE802.11g…………………………………………………......... 87
3.7.2 IEEE 802.11h………………………………………………………87
3.7.3 IEEE 802.16a………………………………………………………87
DANH MỤC HÌNH VẼ
Hình 1.1: So sánh kỹ thuật sóng mang không chồng xung (a) và kỹ thuật sóng mang chồng xung (b) 15
Hình 1.2: Sơ đồ hệ thống OFDM 16
Hình 1.3: Hệ thống OFDM cơ bản 17
Hình 1.4: Sắp xếp tần số trong hệ thống OFDM 18
Hình 1.5: Symbol OFDM với 4 subscriber 18
Hình 1.6: Phổ của sóng mang con OFDM 19
Hình 1.7: Truyền dẫn sóng mang đơn 19
Hình 1.8: Cấu trúc hệ thống truyền dẫn đa sóng mang 20
Hình 1.9: Các sóng mang trực giao 23
Hình 1.10: Thêm CP vào symbol OFDM 26
Hình 1.11: Tích của hai vector trực giao bằng 0 27
Hình 1.12: Giá trị của sóng sine bằng 0 28
Hình 1.13: Tích phân của hai sóng sine có tần số khác nhau 28
Hình 1.14: Tích hai sóng sine cùng tần số 29
Hình 1.15: Biểu đồ không gian tín hiệu BPSK 31
Hình 1.16: Biểu đồ tín hiệu QPSK 34
Hình 1.17: Chùm tín hiệu M-QAM 35
Hình 1.18: Giản đồ IQ của 16-PSK khi dùng mã Gray. Mỗi vị trí IQ liên tiếp chỉ thay đổi một bit đơn 36
Hình 1.19: Giản đồ IQ cho các dạng điều chế sử dụng trong OFDM 37
Hình 3.1 Sơ đồ khối phía phát hệ thống DAB……………………………..47
Hình 3.2 Sơ đồ máy thu DAB……………………………………………...48
Hình 3.3: Bảng tham số kỹ thuật truyền dẫn DAB……………………….48
Hình 3.4: Sơ đồ khối bộ điều chế số DVB-T………………………………52
Hình 3.5.Sơ đồ khối phần biến đổi số sang tương tự………………………….52
Hình 3.6 Phổ của tín hiệu OFDM với số sóng mang N=16
và phổ tín hiệu RF thực tế………………………………………………………53
Hình 3.7. Biểu diễn chòm sao của điều chế QPSK, 16-QAM và 64-QAM………55
Hình 3.8. Biểu diễn chòm sao của điều chế phân cấp 16-QAM với α = 4……56
Hình 3.9. Phân bố sóng mang của DVB-T (chưa chèn khoảng bảo vệ)………56
Hình 3.10. Phân bố các pilot của DVB-T………………………………………57
Hình 3.11. Phân bố các pilot của DVB-T trên biểu đồ chòm sao……………..58
Hình 3.12. Phân bố sóng mang khi chèn thêm khoảng thời gian bảo vệ ………58
Hình 3.13. Các tia sóng đến trong thời khoảng bảo vệ………………………..59
Hình 3.14: Sơ đồ khối hệ thống quảng bá truyền hình số vệ tinh………………...63
Hình 3.15. Sơ đồ khối hệ thống thu truyền hình số……………………………..63
Hình 3.16. Sơ đồ khối hệ thống truyền hình số hữu tuyến……………………..64
Hình 3.17. ODFM và OFDMA………………………………………………….65
Hình 3.18. Ví dụ của biểu đồ tần số, thời gian với OFDMA…………………….66
Hình 3.19 Biểu đồ tần số thời gian với 3 người dùng nhảy tần a, b, c đều có 1 bước nhảy với 4 khe thời gian…………………………………………………67
Hình 3.20 6 mẫu nhảy tần trực giao với 6 tần số nhảy khác nhau…………… 68
Hình 3.21: Tổng quan hệ thống sử dụng OFDMA ……………………………68
Hình 3.22 Mẫu tín hiệu dẫn đường trong OFDMA …………………………..69
Hình 3.23. OFDMA downlink…………………………………………………69
Hình 3.24 Cấu trúc cụm trong OFDMA downlink ……………………………….70
Hình 3.25 OFDMA uplink………………………………………………………71
Hình 3.26. Cấu trúc cụm trong OFDMA uplink………………………………. 71
Hình 3.27 Chèn chuỗi dẫn đường trong miền tần số và thời gian………………72
Hình 3.28 Điều chế thích nghi……………………………………………….. 74
Hình 3.29 Ví dụ về một ma trận mã LDPC …………………………………..76
Hình 3.30 Sơ đồ tạo mã RS …………………………………………………….79
Hình 3.31 Sơ đồ syndrome thu của RS………………………………………. 80
Hình 3.32. Môi trường truyền sóng của hệ thống DRM………………………….85Hình 3.33: Sơ đồ khối hệ thống DRM ………………………………………….86
DANH MỤC BẢNG BIỂU
Bảng 1.1: Số bit ngõ vào và số phức ngõ ra của các dạng điều chế 30
Bảng 1.2: Quan hệ của cặp bit điều chế và tọa độ của các điểm tín hiệu điều chế QPSK trong tín hiệu không gian 33
Bảng 1.3: Bảng mã Gray 36
Bảng 3.1 Mô tả các thông số các mode làm việc trong DVB_T…………..51
Bảng 3.2: Tổng vận tốc dòng dữ liệu……………………………………....60
Bảng 3.3 : Các thông số chính trong chip vi xử lý mRD61530 LSI………62
Bảng 3.4 : Các thông số của ISDB-T (truyền hình)……………………….82
Bảng 3.5 : Các thông số ISDB-T (truyền thanh)…………………………..83
BẢNG CÁC TỪ VIẾT TẮT
2G
Second Generation
3G
Third Generation
4G
Fourth Generation
ADSL
Asymmetric Digital Subscriber Line
AM
Amplitude Modulation
ARIB
Association of Radio Industries and Business
ASK
Amplitude Shift Keying
AWGN
Additive White Gauss Noise
BPSK
Binary Phase Shift Keying
CDMA
Code Divition Multiple Access
CFO
Carrier Frequency Offset
CIR
Channel Impulse Response
CP
Cycle Prefix
CPE
Common Phase Error
DAB
Digital Audio Broadcasting
DC
Direct Current
DFS
Dynamic Frequency Selection
DFT
Discrete Fourier Transfrom
DQPSK
Differential Quadrature Phase Shift Keying
DRM
Digital Radio Mondiale
DSBSC
Double Side Band Suppressed Carrier
DSP
Digital Signal Processing
BTS
Base Transceiver Station
DVB-T
Digital Video Broadcasting – Terrestrial
FDM
Frequency Divition Multiplexing
FDD
Frequency Division Duplexing
FEC
Forward Error Correction
FFT
Fast Fourier Transfrom
FM
Frequency Modulation
GSM
Global System for Mobile
HIPER LAN
High Performance Local Area Network
ICI
Inter Carrier Interference
IDFT
Inverse Discrete Fourier Transfrom
IEEE
Institute of Electrical and Electronic Engneers
IFFT
Inverse Fast Fourier Tranfrom
IQ
Inphase Quadrature
ISDB-T
Intergrated Service Digital Broadcasting - Terrestrial
ISI
Inter Symbol Interference
ISR
ICI to Signal Ratio
LAN
Local Area Network
LOS
Line Of Sight
MAC
Medium Access Control
MC-CDMA
Multi Carrier Code Divition Multiple Access
MFN
Multi Frequency Network
ML
Maximum Likelihood
NLOS
Non Line Of Sight
OFDM
Orthogonal Frequency Divition Multiplexing
PHN
Phase Noise
PM
Phase Modulation
PN
Pseudo Noise
P/S
Parrallel to Serial
PSK
Phase Shift Keying
QAM
Quadrature Amplitude Modulation
QPSK
Quadrature Phase Shift Keying
RF
Radio Frequency
RLS
Recursive Least Squares
SFP
Subjective Failure Point
SFO
Sampling clock Frequency Offset
SNR
Signal to Noise Ratio
S/P
Serial to Parrallel
SSB
Super Smash Bros
TCP
Transmission Power Control
TD
Time Domain
TDD
Time Division Duplexing
TDMA
Time Division Multiple Access
TO
Timing Offset
UHF
Ultra High Frequency
VSB
Vestigaial Side Band
WiMax
World Interoperability Microwave Access
WLAN
Wireless Local Area Network
MỞ ĐẦU
Trong những năm gần đây, các dịch vụ viễn thông phát triển hết sức nhanh chóng đã tạo ra nhu cầu to lớn cho các hệ thống truyền dẫn thông tin. Mặc dù các yêu cầu kỹ thuật cho các dịch vụ này là rất cao song cần có các giải pháp thích hợp để thực hiện. Orthogonal Frequency Division Multiplexing (OFDM) là một phương pháp điều chế cho phép truyền dữ liệu tốc độ cao trong các kênh truyền chất lượng thấp. OFDM đã được sử dụng trong phát thanh truyền hình số, đường dây thuê bao số không đối xứng, mạng cục bộ không dây. Với các ưu điểm của mình, OFDM đang tiếp tục được nghiên cứu và ứng dụng trong các lĩnh vực khác như truyền thông qua đường dây tải điện, thông tin di động, Wireless ATM …
OFDM là nằm trong lớp các kỹ thuật điều chế đa song mang. Kỹ thuật này phân chia dải tần cho phép thành rất nhiều dải tần con với các sóng mang khác nhau, mỗi sóng mang này được điều chế để truyền một dòng dữ liệu tốc độ thấp. Tập hợp các dòng dữ liệu tốc độ thấp này chính là dòng dữ liệu tốc độ cao cần truyền tải. Các sóng mang trong kỹ thuật điều chế đa sóng mang là họ sóng mang trực giao. Điều này cho phép ghép chồng phổ giữa các sóng mang do đó sử dụng giải thông một cách có hiệu quả. Ngoài ra sử dụng họ sóng mang trực giao còn mang lại nhiều lợi thế kỹ thuật khác, do đó các hệ thống điều chế đa sóng mang đều sử dụng họ sóng mang đa trực giao và gọi chung là ghép kênh theo tần số trực giao OFDM.
Khái niệm truyền dữ liệu song song bằng cách ghép kênh phân chia theo tần số (FDM) được giới thiệu từ giữa những năm 60. Ý tưởng là sử dụng các luồng dữ liệu song song và FDM với các kênh con gối lên nhau để không phải sử dụng bộ cân bằng tốc độ cao và loại bỏ nhiễu xung, méo đa đường và tận dụng toàn bộ lượng băng thông. Ứng dụng đầu tiên là trong quân sự, trong lĩnh vực viễn thông thuật ngữ đa tần rời rạc (DMT – Discrete Multi-tone), điều chế đa kênh và điều chế đa sóng mang (MCM) được sử dụng rộng rãi và còn được gọi cách khác là OFDM. Vào những năm 80, OFDM được nghiên cứu sử dụng trong các modem tốc độ cao, trong di động số và ghi âm mật độ cao. Một trong những hệ thống sử dụng một tần số pilot cho sóng mang ổn định và điều khiển tần số đồng hồ, mã hóa trellis được thực hiện. Nhiều modem tốc độ cao được phát triển cho mạng điện thoại. Vào những năm 90, OFDM được sử dụng trong truyền dữ liệu băng rộng qua kênh vô tuyến di động FM, đường dây thuê bao số tốc độ cao (HDSL, 1.6Mb/s), đường dây thuê bao số bất đối xứng (ADSL, 1.536 Mb/s), đường dây thuê bao số tốc độ rất cao (VHDSL, 100 Mb/s), quảng bá audio số (DAB) và HDTV.
Bên cạnh những lợi ích rất lớn của OFDM, thì mặt hạn chế của nó là vấn đề lỗi đồng bộ (SFO,CFO) và kênh truyền biến đổi theo thời gian. Hoạt động của OFDM rất nhạy với lỗi đồng bộ ở bộ nhận. Lỗi đồng bộ tạo ra nhiễu giao thoa liên sóng mang (ICI), nó sẽ phá hủy tính trực giao giữa các sóng mang OFDM. Mà kỹ thuật OFDM chỉ phát huy được những ưu điểm của nó khi tính trực giao được duy trì. Vì vậy có rất nhiều nghiên cứu tập trung vào nó để nâng cao chất lượng hoạt động của nó. Trong đó có một phương pháp rất hữu hiệu là Kết hợp ước lượng kênh và đồng bộ sử dụng Pilot Tone cùng với kỹ thuật giảm ICI cho hệ thống OFDM. Phương pháp này ước lượng lệch tần số sóng mang và bù SFO, CFO trong miền thời gian làm giảm ICI. Khi ICI giảm, tính trực giao của kỹ thuật OFDM sẽ được duy trì tốt và các ưu điểm của kỹ thuật được phát huy mạnh mẽ. Ta có thể thấy rằng phương pháp này là một phần quan trọng trong kỹ thuật OFDM. Đồ án này tập trung nghiên cứu sâu về phương pháp hữu hiệu này.
Nội dung trình bày đồ án bao gồm:
Chương 1: Giới thiệu tổng quan về OFDM
Chương 2: Giới thiệu các ứng dụng của OFDM
Chương 3: Trình bày các hạn chế gây ảnh hưởng đến OFDM
Chương 1
GIỚI THIỆU TỔNG QUAN VỀ OFDM
1.1. Giới thiệu chương
Chương này sẽ giới thiệu về các khái niệm, nguyên lý cũng như thuật toán của OFDM. Các nguyên lý cơ bản của OFDM, mô tả toán học, kỹ thuật đơn sóng mang, đa sóng mang và các kỹ thuật điều chế trong OFDM. Bên cạnh đó các ứng dụng và ưu nhược điểm của hệ thống OFDM cũng được đưa ra ở đây.
1.2. Các nguyên lý cơ bản của OFDM
Nguyên lý cơ bản của OFDM là chia một luồng dữ liệu tốc độ cao thành các luồng dữ liệu tốc độ thấp hơn và phát đồng thời trên một số các sóng mang con trực giao. Vì khoảng thời gian symbol tăng lên cho các sóng mang con song song tốc độ thấp hơn, cho nên lượng nhiễu gây ra do độ trải trễ đa đường được giảm xuống. Nhiễu xuyên ký tự ISI được hạn chế hầu như hoàn toàn do việc đưa vào một khoảng thời gian bảo vệ trong mỗi symbol OFDM. Trong khoảng thời gian bảo vệ, mỗi symbol OFDM được bảo vệ theo chu kỳ để tránh nhiễu giữa các sóng mang ICI.
Giữa kỹ thuật điều chế đa sóng mang không chồng phổ và kỹ thuật điều chế đa sóng mang chồng phổ có sự khác nhau. Trong kỹ thuật đa sóng mang chồng phổ, ta có thể tiết kiệm được khoảng 50% băng thông. Tuy nhiên, trong kỹ thuật đa sóng mang chồng phổ, ta cần triệt xuyên nhiễu giữa các sóng mang, nghĩa là các sóng này cần trực giao với nhau.
Trong OFDM, dữ liệu trên mỗi sóng mang chồng lên dữ liệu trên các sóng mang lân cận. Sự chồng chập này là nguyên nhân làm tăng hiệu quả sử dụng phổ trong OFDM. Ta thấy trong một số điều kiện cụ thể, có thể tăng dung lượng đáng kể cho hệ thống OFDM bằng cách làm thích nghi tốc độ dữ liệu trên mỗi sóng mang tùy theo tỷ số tín hiệu trên tạp âm SNR của sóng mang đó.
(a)
Tần số
Tần số
Tiết kiệm băng thông
(b)
Hình 1.1: So sánh kỹ thuật sóng mang không chồng xung (a) và kỹ thuật sóng mang chồng xung (b).
Ch.1
Ch.10
Về bản chất, OFDM là một trường hợp đặc biệt của phương thức phát đa sóng mang theo nguyên lý chia dòng dữ liệu tốc độ cao thành tốc độ thấp hơn và phát đồng thời trên một số sóng mang được phân bổ một cách trực giao. Nhờ thực hiện biến đổi chuỗi dữ liệu từ nối tiếp sang song song nên thời gian symbol tăng lên. Do đó, sự phân tán theo thời gian gây bởi trải rộng trễ do truyền dẫn đa đường (multipath) giảm xuống.
OFDM khác với FDM ở nhiều điểm. Trong phát thanh thông thường mỗi đài phát thanh truyền trên một tần số khác nhau, sử dụng hiệu quả FDM để duy trì sự ngăn cách giữa những đài. Tuy nhiên không có sự kết hợp đồng bộ giữa mỗi trạm với các trạm khác. Với cách truyền OFDM, những tín hiệu thông tin từ nhiều trạm được kết hợp trong một dòng dữ liệu ghép kênh đơn. Sau đó dữ liệu này được truyền khi sử dụng khối OFDM được tạo ra từ gói dày đặc nhiều sóng mang. Tất cả các sóng mang thứ cấp trong tín hiệu OFDM được đồng bộ thời gian và tần số với nhau, cho phép kiểm soát can nhiễu giữa những sóng mang. Các sóng mang này chồng lấp nhau trong miền tần số, nhưng không gây can nhiễu giữa các sóng mang (ICI) do bản chất trực giao của điều chế. Với FDM những tín hiệu truyền cần có khoảng bảo vệ tần số lớn giữa những kênh để ngăn ngừa can nhiễu. Điều này làm giảm hiệu quả phổ. Tuy nhiên với OFDM sự đóng gói trực giao những sóng mang làm giảm đáng kể khoảng bảo vệ cải thiện hiệu quả phổ.
x(n)
xf(n)
h(n)
yf(n)
y(n)
Y(k)
AWGN
w(n)
Sắp
xếp
S/P
P/S
IDFT
DFT
Chèn pilot
Ước lượng kênh
Chèn dải bảo vệ
Loại bỏ dải bảo vệ
Sắp
xếp lại
Kênh
+
P/S
S/P
Dữ liệu nhị phân
Dữ liệu ra
Hình 1.2: Sơ đồ hệ thống OFDM
Đầu tiên, dữ liệu vào tốc độ cao được chia thành nhiều dòng dữ liệu song song tốc độ thấp hơn nhờ bộ chuyển đổi nối tiếp/song song (S/P: Serial/Parrallel). Mỗi dòng dữ liệu song song sau đó được mã hóa sử dụng thuật toán sửa lỗi tiến (FEC) và được sắp xếp theo một trình tự hỗn hợp. Những symbol hỗn hợp được đưa đến đầu vào của khối IDFT. Khối này sẽ tính toán các mẫu thời gian tương ứng với các kênh nhánh trong miền tần số. Sau đó, khoảng bảo vệ được chèn vào để giảm nhiễu xuyên ký tự ISI do truyền trên các kênh di động vô tuyến đa đường. Sau cùng bộ lọc phía phát định dạng tín hiệu thời gian liên tục sẽ chuyển đổi lên tần số cao để truyền trên các kênh. Trong quá trình truyền, trên các kênh sẽ có các nguồn nhiễu gây ảnh hưởng như nhiễu trắng cộng AWGN,…
Ở phía thu, tín hiệu được chuyển xuống tần số thấp và tín hiệu rời rạc đạt được tại bộ lọc thu. Khoảng bảo vệ được loại bỏ và các mẫu được chuyển từ miền thời gian sang miền tần số bằng phép biến đổi DFT dùng thuật toán FFT. Sau đó, tùy vào sơ đồ điều chế được sử dụng, sự dịch chuyển về biên độ và pha của các sóng mang nhánh sẽ được cân bằng bằng bộ cân bằng kênh (Channel Equalization). Các symbol hỗn hợp thu được sẽ được sắp xếp ngược trở lại và được giải mã. Cuối cùng chúng ta sẽ thu nhận được dòng dữ liệu nối tiếp ban đầu.
Hình 1.3 : Hệ thống OFDM cơ bản
Hình 1.4 : Sắp xếp tần số trong hệ thống OFDM
Hình 1.5 : Symbol OFDM với 4 subscriber
Tất cả các hệ thống truyền thông vô tuyến sử dụng sơ đồ điều chế để ánh xạ tín hiệu thông tin tạo thành dạng có thể truyền hiệu quả trên kênh thông tin. Một phạm vi rộng các sơ đồ điều chế đã được phát triển, phụ thuộc vào tín hiệu thông tin là dạng sóng analog hoặc digital. Một số sơ đồ điều chế tương tự chung bao gồm: điều chế tần số (FM), điều chế biên độ (AM), điều chế pha (PM), điều chế đơn biên (SSB), Vestigial side Band (VSB), Double Side Band Suppressed Carrier (DSBSC). Các sơ đồ điều chế sóng mang đơn chung cho thông tin số bao gồm khoá dịch biên độ (ASK), khoá dịch tần số (FSK), khoá dịch pha (PSK), điều chế QAM.
Kỹ thuật điều chế đa sóng mang trực giao dựa trên nguyên tắc phân chia luồng dữ liệu có tốc độ cao R (bit/s) thành k luồng dữ liệu thành phần có tốc độ thấp R/k (bit/s); mỗi luồng dữ liệu thành phần được trải phổ với các chuỗi ngẫu nhiên PN có tốc độ Rc (bit/s). Sau đó điều chế với sóng mang thành phần OFDM, truyền trên nhiều sóng mang trực giao. Phương pháp này cho phép sử dụng hiệu quả băng thông kênh truyền, tăng hệ số trải phổ, giảm tạp âm giao thoa ký tự ISI nhưng tăng khả năng giao thoa sóng mang.
Trong công nghệ FDM truyền thống, các sóng mang được lọc ra riêng biệt để bảo đảm không có sự chồng phổ, do đó không có hiện tượng giao thoa ký tự ISI giữa những sóng mang nhưng phổ lại chưa được sử dụng với hiệu quả cao nhất. Với kỹ thuật OFDM, nếu khoảng cách sóng mang được chọn sao cho những sóng mang trực giao trong chu kỳ ký tự thì những tín hiệu được khôi phục mà không giao thoa hay chồng phổ.
Hình 1.6: Phổ của sóng mang con OFDM
1.3 Đơn sóng mang (Single Carrier)
Hệ thống đơn sóng mang là một hệ thống có dữ liệu được điều chế và truyền đi chỉ trên một sóng mang.
Hình 1.7: Truyền dẫn sóng mang đơn
Hình 1.7 mô tả cấu trúc chung của một hệ thống truyền dẫn đơn sóng mang. Các ký tự phát đi là các xung được định dạng bằng bộ lọc ở phía phát. Sau khi truyền trên kênh đa đường. Ở phía thu, một bộ lọc phối hợp với kênh truyền được sử dụng nhằm cực đại tỷ số tín hiệu trên nhiễu (SNR) ở thiết bị thu nhận dữ liệu. Đối với hệ thống đơn sóng mang, việc loại bỏ nhiễu giao thoa bên thu cực kỳ phức tạp. Đây chính là nguyên nhân để các hệ thống đa sóng mang chiếm ưu thế hơn các hệ thống đơn sóng mang.
1.4 Đa sóng mang (Multi-Carrier)
Nếu truyền tín hiệu không phải bằng một sóng mang mà bằng nhiều sóng mang, mỗi sóng mang tải một phần dữ liệu có ích và được trải đều trên cả băng thông thì khi chịu ảnh hưởng xấu của đáp tuyến kênh sẽ chỉ có một phần dữ liệu có ích bị mất, trên cơ sở dữ liệu mà các sóng mang khác mang tải có thể khôi phục dữ liệu có ích.
Hình 1. 8: Cấu trúc hệ thống truyền dẫn đa sóng mang
Do vậy, khi sử dụng nhiều sóng mang có tốc độ bit thấp, các dữ liệu gốc sẽ thu được chính xác. Để khôi phục dữ liệu đã mất, người ta sử dụng phương pháp sửa lỗi tiến FFC. Ở máy thu, mỗi sóng mang được tách ra khi dùng bộ lọc thông thường và giải điều chế. Tuy nhiên, để không có can nhiễu giữa các sóng mang (ICI) phải có khoảng bảo vệ khi hiệu quả phổ kém.
OFDM là một kỹ thuật điều chế đa sóng mang, trong đó dữ liệu được truyền song song nhờ vô số sóng mang phụ mang các bit thông tin. Bằng cách này ta có thể tận dụng băng thông tín hiệu, chống lại nhiễu giữa các ký tự,…Để làm được điều này, một sóng mang phụ cần một máy phát sóng sin, một bộ điều chế và giải điều chế của riêng nó. Trong trường hợp số sóng mang phụ là khá lớn, điều này là không thể chấp nhận được. Nhằm giải quyết vấn đề này, khối thực hiện chức năng biến đổi IDFT/DFT được dùng để thay thế hàng loạt các bộ dao động tạo sóng sin, bộ điều chế, giải điều chế. Hơn nữa, IFFT/FFT được xem là một thuật toán giúp cho việc biến đổi IDFT/DFT nhanh và gọn hơn bằng cách giảm số phép nhân phức khi thực hiện phép biến đổi IDFT/DFT và giúp tiết kiệm bộ nhớ bằng cách tính tại chỗ. Mỗi sóng mang trong hệ thống OFDM đều có thể viết dưới dạng :
Với hệ thống đa sóng mang OFDM ta có thể biểu diễn tín hiệu ở dạng sau:
Trong đó:
al,k : là dữ liệu đầu vào được điều chế trên sóng mang nhánh thứ k trong symbol OFDM thứ l
N : số sóng mang nhánh
L : chiều dài tiền tố lặp (CP)
Khoảng cách sóng mang nhánh là
Giải pháp khắc phục hiệu quả phổ kém khi có khoảng bảo vệ (Guard Period) là giảm khoảng cách các sóng mang và cho phép phổ của các sóng mang cạnh nhau trùng lặp nhau. Sự trùng lắp này được phép nếu khoảng cách giữa các sóng mang được chọn chính xác. Khoảng cách này được chọn ứng với trường hợp sóng mang trực giao với nhau. Đó chính là phương pháp ghép kênh theo tần số trực giao. Từ giữa những năm 1980, người ta đã có những ý tưởng về phương pháp này nhưng còn hạn chế về mặt công nghệ, vì khó tạo ra các bộ điều chế đa sóng mang giá thành thấp theo biến đổi nhanh Fuorier IFFT. Hiện nay, nhờ ứng dụng công nghệ mạch tích hợp nên phương pháp này đã được đưa vào ứng dụng trong thực tiễn.
1.5. Sự trực giao (Orthogonal)
Orthogonal chỉ ra rằng có một mối quan hệ chính xác giữa các tần số của các sóng mang trong hệ thống OFDM. Trong hệ thống FDM thông thường, các sóng mang được cách nhau trong một khoảng phù hợp để tín hiệu thu có thể nhận lại bằng cách sử dụng các bộ lọc và các bộ giải điều chế thông thường. Trong các máy như vậy, các khoảng bảo vệ cần được dự liệu trước giữa các sóng mang khác nhau. Việc đưa vào các khoảng bảo vệ này làm giảm hiệu quả sử dụng phổ của hệ thống.
Đối với hệ thống đa sóng mang, tính trực giao trong khía cạnh khoảng cách giữa các tín hiệu là không hoàn toàn phụ thuộc, đảm bảo cho các sóng mang được định vị chính xác tại điểm gốc trong phổ điều chế của mỗi sóng mang . Tuy nhiên, có thể sắp xếp các sóng mang trong OFDM sao cho các dải biên của chúng che phủ lên nhau mà các tín hiệu vẫn có thể thu được chính xác mà không có sự can nhiễu giữa các sóng mang. Để có được kết quả như vậy, các sóng mang phải trực giao về mặt toán học. Máy thu hoạt động gồm các bộ giải điều chế, dịch tần mỗi sóng mang xuống mức DC, tín hiệu nhận được lấy tích phân trên một chu kỳ của symbol để phục hồi dữ liệu gốc. Nếu mọi sóng mang đều dịch xuống tần số tích phân của sóng mang này (trong một chu kỳ t, kết quả tính tích phân các sóng mang khác sẽ là zero. Do đó, các sóng mang độc lập tuyến tính với nhau (trực giao) nếu khoảng cách giữa các sóng là bội số của 1/t. Bất kỳ sự phi tuyến nào gây ra bởi sự can nhiễu của các sóng mang ICI cũng làm mất đi tính trực giao.
Hình 1.9: Các sóng mang trực giao
Phần đầu của tín hiệu để nhận biết tính tuần hoàn của dạng sóng, nhưng lại dễ bị ảnh hưởng bởi nhiễu xuyên ký tư (ISI). Do đó, phần này có thể được lặp lại, gọi là tiền tố lặp (CP: Cycle Prefix).
Do tính trực giao, các sóng mang con không bị xuyên nhiễu bởi các sóng mang con khác. Thêm vào đó, nhờ kỹ thuật đa sóng mang dựa trên FFT và IFFT nên hệ thống OFDM đạt được hiệu quả không phải bằng việc lọc dải thông mà bằng việc xử lý băng tần gốc.
1.5.1. Trực giao miền tần số
Một cách khác để xem tính trực giao của những tín hiệu OFDM là xem phổ của nó. Trong miền tần số, mỗi sóng mang thứ cấp OFDM có đáp tuyến tần số sinc (sin (x)/x). Đó là kết quả thời gian symbol tương ứng với nghịch đảo của sóng mang. Mỗi symbol của OFDM được truyền trong một thời gian cố định (TFFT). Thời gian symbol tương ứng với nghịch đảo của khoảng cách tải phụ 1/TFFT Hz. Dạng sóng hình chữ nhật này trong miền thời gian dẫn đến đáp tuyến tần số sinc trong miền tần số. Mỗi tải phụ có một đỉnh tại tần số trung tâm và một số giá trị không được đặt cân bằng theo các khoảng trống tần số bằng khoảng cách sóng mang. Bản chất trực giao của việc truyền là kết quả của đỉnh mỗi tải phụ. Tín hiệu này được phát hiện nhờ biến đổi Fourier rời rạc (DFT).
1.5.2. Mô tả toán học của OFDM
Mô tả toán học OFDM nhằm trình bày cách tạo ra tín hiệu, cách vận h
Các file đính kèm theo tài liệu này:
- T#U1ed4NG QUAN V#U1ec0 OFDM .doc