Đề tài Địa chất học

Địa chất học là m ột ngành thuộc các khoa học Trái Đất, là môn

khoa học nghiên cứu về các vật chất rắn và lỏng cấu tạo nên Trái

Đất, đúng ra là nghiên cứu thạch quyển bao gồm cả phần vỏ Trái

Đất và phần cứng của manti trên. Địa chất học tập trung nghiên

cứu: cấu trúc, đặc điểm vật lý, động lực, và lịch sử của các vật liệu

trên Trái đất, kể cả các quá trình hình thành, vận chuyển và biến

đổicủa các vật liệu này. Giải quyết các vấn đề của địa chất liên

quan đến rất nhiều chuyên ngành khác nhau. Lĩnh vực này cũng

rất quan trọng trong việc khai thác khoáng sản và dầu khí. Ngoài

ra, nó cũng nghiên cứu giảm nhẹ các tai biến tự nhiên và cổ khí

hậu cùng các lĩnh vực kỹ thuật khác

pdf16 trang | Chia sẻ: oanh_nt | Lượt xem: 1409 | Lượt tải: 0download
Nội dung tài liệu Đề tài Địa chất học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Địa chất học Các tỉnh địa chất trên thế giới (theo USGS) Khiên Nền Kiến tạo sơn Bồn địa Tỉnh đá lửa lớn Lớp vỏ mở rộng Vỏ đại dương: 0–20 Ma 20–65 Ma >65 Ma Chủ đề Địa chất học Địa chất học là một ngành thuộc các khoa học Trái Đất, là môn khoa học nghiên cứu về các vật chất rắn và lỏng cấu tạo nên Trái Đất, đúng ra là nghiên cứu thạch quyển bao gồm cả phần vỏ Trái Đất và phần cứng của manti trên. Địa chất học tập trung nghiên cứu: cấu trúc, đặc điểm vật lý, động lực, và lịch sử của các vật liệu trên Trái đất, kể cả các quá trình hình thành, vận chuyển và biến đổi của các vật liệu này. Giải quyết các vấn đề của địa chất liên quan đến rất nhiều chuyên ngành khác nhau. Lĩnh vực này cũng rất quan trọng trong việc khai thác khoáng sản và dầu khí. Ngoài ra, nó cũng nghiên cứu giảm nhẹ các tai biến tự nhiên và cổ khí hậu cùng các lĩnh vực kỹ thuật khác. Lịch sử và từ nguyên học Từ nguyên học Thuật ngữ "địa chất học" được Jean-André Deluc sử dụng lần đầu tiên vào năm 1778 và được Horace-Bénédict de Saussure sử dụng là thuật ngữ chính thức từ năm 1779. Là khoa học không có tên trong Encyclopædia Britannica xuất bản lần thứ 3 năm 1797, nhưng 10 năm sau nó đã được khẳng định trong tái bản thứ 4 vào năm 1809.[1] Một nghĩa cổ hơn đượcRichard de Bury sử dụng lần đầu tiên để phân biệt giữa thuyết về thần học và về trái đất. Lịch sử Bài chi tiết: Lịch sử địa chất học Một con muỗi trong hổ phách biển Baltic có tuổi khoảng 40 đến 60 triệu năm Công trình Peri Lithon (bên trong hòn đá) của học giả người Hy Lạp cổ đại Theophrastus (372-287 BC), là một học trò của triết gia Hy Lạp cổ đạiAristotle, là công trình có giá trị trong khoảng 10 thế kỷ. Peri Lithon được dịch sang tiếng Latin và một số ngoại ngữ khác. Sự giải đoán về các hóa thạch của nó là học thuyết nổi trội nhất trong thời cổ đại và đầu thời Trung cổ, cho đến khi nó được thay thế bởi học thuyết về các dòng chảy hóa đá của Avicenna vào cuối thời Trung cổ.[2][3] Trong thời đại La Mã, Pliny the Elder đưa ra rất nhiều các thảo luận mở rộng về một số các khoáng vật và kim loại sau đó được sử dụng rộng rãi trong thực tế. Ông là một trong số những người đầu tiên xác định một cách chính xác nguồn gốc của hổ phách, là một loại nhựa của các cây thông bị hóa thạch, từ việc quan sát các côn trùng bị giữ trong một số mẫu. Ông cũng đặt ra nền tảng của tinh thể học thông qua việc nhận biết dạng thù hình bát diện của kim cương. Một số học giả hiện đại như Fielding H. Garrison, đưa ra ý tưởng về địa chất học hiện đại bắt đầu trong thế giới đạo Hồi thời Trung cổ.[4] Abu al-Rayhan al-Biruni (973-1048 SCN) là một trong những nhà địa chất đạo Hồi đâu tiên, với công trình bao gồm các bài viết đầu tiên về địa chất Ấn Độ, và cho rằng tiểu lục địa Ấn Độ trước kia là biển .[5] Ibn Sina (Avicenna, 981-1037), thì có những đóng góp đặc biệt hơn cho địa chất học và các khoa học tự nhiên (ông được gọi là Attabieyat) cùng với các nhà triết học tự nhiên khác như Ikhwan AI- Safa và những người khác. Ông viết một công trình bách khoa toàn thư với tựa đề “Kitab al-Shifa” (sách về sự chữa bệnh từ sự thiếu hiểu biết), trong phần 2, mục 5 có bài viết về khoáng vật học và thiên thạch học, gồm sáu chương: Sự hình thành núi, Ưu điểm của núi trong việc hình thành các đám mây; Nguồn nước; Nguồn gốc động đất; Sự thành tao khoáng vật; Sự đa dạng địa hình trên Trái đất. Các nguyên tắc này sau này được biết đến như luật xếp chồng trong địa tầng, gồm ý tưởng về thuyết tai biến, và hiện tại luận vào thời Phục Hưng của Châu Âu . Các khái niệm này cũng được nhắc đến trong các học thuyết về Trái đất của James Hutton vào thế kỷ 18 C.E. Các học giả như Toulmin và Goodfield (1965), nhận xét về sự đóng góp của Avicenna như sau: "Khoảng 1000 Sau CN, Avicenna đã từng đề xuất học thuyết về nguồn gốc của các dãy núi, trong thế giới Công giáo vẫn được đề cập đến khá căn bản vào 800 năm sau ".[6] Phương pháp khoa học của Avicenna về quan sát thực địa cũng là nguồn gốc của các khoa học về Trái đất, và vẫn còn được giữ một phần trong các cuộc khảo sát thưc địa hiện đại.[3] Bản đồ địa chất Anh, Wales và miền namScotland. Được hoàn thành vào năm 1815, nó là bản đồ địa chất đầu tiên ở tỷ lệ quốc gia, và hầu như được chấp nhận là chính xác vào thời điểm đó.[7] Ở Trung Quốc, học giả Shen Kua (1031-1095) tính toán một học thuyết về các quá trình tạo ra đất liền: dựa trên sự quan sát của ông ta về các vỏ sò hóa thạch trong cột địa tầng địa chất xuất hiện ở một dãy núi cách biển hàng trăm dặm. Ông ta cho rằng đất liền được hình thành từ sự xói mòn của các dãy núi và sự tích tụ của bột. Georg Agricola (1494-1555), một nhà vật lý, viết luận án đầu tiên một cách hệ thống hóa về các công trình khai thác mỏ và nung chảy, De re metallica libri XII, với phụ lục Buch von den Lebewesen unter Tage (sách về các loài vật bên trong Trái đất). Ông cũng quan tâm đến năng lượng gió, thủy điện,các lò nung chảy, vận chuyển quặng, chiết tách soda, lưu huỳnh và nhôm, và các vấn đề quản trị. Quyển sách được xuất bản năm 1556. Nicolas Steno (1638-1686) công nhận luật xếp chồng, nguyên tắc phân lớp ngang nguyên thủy, và nguyên tắc liên tục theo chiều ngang: là 3 nguyên tắc xác định địa tầng. Vào thập niên 1700 Jean-Étienne Guettard và Nicolas Desmarest quan sát vùng trung tâm nước Pháp và ghi nhận những quan sát của họ trên các bản đồ địa chất; Guettard ghi nhận quan sát đầu tiên của ông về các nguồn gốc núi lửa ở khu vực này của Pháp. William Smith (1769-1839) đã vẽ một vài bản đồ địa chất đầu tiên và bắt đầu quá trình xếp các lớp đá theo cột địa tầng bằng cách kiểm tra các hóa thạch được chứa trong chúng.[7] James Hutton thường được xem là nhà địa chất học hiện đại đầu tiên.[8] Năm 1785 ông ta đăng một bài báo có tựa là Học thuyết về Trái đấttrên tạp chí Khoa học Hoàng gia Edinburgh. Trong bài báo này , ông đã giải thích học thuyết của ông rằng Trái đất phải cổ hơn các nghiên cứu được đưa ra trước đây, nhằm có đủ thời gian để các dãy núi bị bào mòn và tạo ra các trầm tích để tạo thành đá mới dưới đáy biển, sau đó các đá này được nâng lên thành đất liền. Hutton xuất bản hai quyển sách về các ý tưởng của ông vào năm 1795 (quyển 1, quyển 2). Nhà địa chất học thế kỷ 19 do Carl Spitzweg vẽ. Các nhà nghiên cứu sau Hutton được biết đến là các nhà theo học thuyết hỏa thành bởi vì họ tin rằng một số đá được hình thành từ núi lửa, là loại lắng đọng từ dụng nham của các núi lửa, ngược lại các nhà theo học thuyết thủy thành, tin rằng tất cả các đá lắng đọng trong bồn biển rộng lớn và sau đó bị lộ ra khi mực nước biển bị hạ thấp liên tục theo thời gian. Năm 1811 Georges Cuvier và Alexandre Brongniart xuât bản các giải thích của họ về sự cổ xưa của Trái đất, dựa trên các khám phá của Cuvier về xương voi hóa thạch ở Paris. Để chứng minh quan điểm này, họ đã tính toán theo nguyên tắc kế thừa trong địa tầng của các lớp đá trên Trái đất. Họ thực hiện trước một cách độc lập với William Smith về địa tầng ở Anh và Scotland. Kiến tạo mảng – tách giãn đáy đại dươngvà trôi dạt lục địa minh họa bằng quả địa cầu tại bảo tàng lịch sử tự nhiên tại Chicago, Illinois, Hoa Kỳ. Sir Charles Lyell lần đầu tiên xuất bản quyển sách nổi tiếng về các nguyên tắc trong địa chất[9], vào năm 1830. Lyell tiếp tục xuất bản các tái bản cho đến khi ông mất vào năm 1875. Quyển sách đã ảnh hưởng đến Charles Darwin, và đề cập đến lý thuyết hiện tại luận. Lý thuyết này đề cập đến các quá trình địa chất diễn ra trong suốt lịch sử Trái Đất và vẫn còn tiếp diễn cho đến ngày nay. Ngược lại, thuyết tai biến là học thuyết về tương lai của Trái đất đề cập đến các sự kiện riêng lẻ, thảm họa và lưu truyền không đổi sau đó. Hutton tin vào hiện tại luận, là ý tưởng mà không được chấp nhận rộng rãi vào thời điểm đó. Địa chất thế kỷ 19 phát triển xung quanh câu hỏi về tuổi chính xác của Trái đất. Các phỏng đoán đưa ra vào khoảng vài trăm ngàn triệu năm.[10] Các tiến bộ về sự phát triển của địa chất trong thế kỷ 20 được ghi nhận bởi thuyết kiến tạo mảng vào thập niên 1960. Thuyết kiến tạo mảng giải quyết được hai vấn đề chính đó là: tách giãn đáy đại dương và trôi dạt lục địa. Học thuyết này cách mạng hóa các khoa học Trái Đất. Thuyết trôi dạt lục địa được Frank Bursley Taylor đưa ra năm 1908, và được phát triển bởi Alfred Wegener năm 1912 và bởi Arthur Holmes, nhưng nó không được chấp nhận cho đến cuối thập kỷ 1960 khi thuyết kiến tạo mảng được phát triển. Các quan điểm quan trọng Chu trình thạch học Bài chi tiết: Chu trình thạch học Chu trình thạch học là một quan điểm quan trọng trong địa chất học, nó mô tả mối quan hệ giữa đá mácma, đá trầm tích, đá biến chất và mác ma. Khi đá kết tinh từ dạng nóng chảy thì gọi là đá mác ma. Loại đá này sau đó hoặc bị bào mòn và tái lắng đọng để tạo thành đá trầm tích hoặc bị biến đổi thành đá biến chất bởi nhiệt độ và áp suất. Đá trầm tích có thể sau đó bị biến đổi thành đá biến chất bởi nhiệt độ và áp suất, và đá biến chất có thể bị phong hóa, bào mòn, lắng đọng và hóa đá để trở thành đá trầm tích. Tất cả các loại đá này có thể bị tái nóng chảy và tạo thành mác ma mới, rồi mác ma này chúng có thể kết tinh để tạo ra đá mác ma một lần nữa. Chu trình này được thể hiện rõ nét bởi các yếu tố động lực liên quan đến học thuyết kiến tạo mảng. Kiến tạo mảng Bài chi tiết: Kiến tạo mảng Sự hút chìm của vỏ đại dương (1) và vỏ lục địa (4) tạo rađới hút chìm và vòng cung núi lửa (5), minh họa cho tác động của kiến tạo mảng. Vào thập niên 1960, một phát hiện quan trọng nhất đó là sự tách giãn đáy đại dương[11][12]. Theo đó, thạch quyển của Trái đất bao gồm vỏ và phần trên cùng của manti trên, bị chia tách thành các mảng kiến tạo và di chuyển trên manti trên ở dạng rắn, dẻo, dễ biến dạng hay trên quyển astheno. Đây là sự chuyển động cặp đôi giữa các mảng trên mặt và dòng đối lưu manti: sự di chuyển mảng và các dùng đối lưu manti lúc nào cũng cùng hướng. Sự dịch chuyển cặp đôi của các mảng trên bề mặt của Trái đất và dòng đối lưu manti được gọi là kiến tạo mảng. Sự phát triển của kiến tạo địa tầng cung cấp những kiến thức vật lý cơ bản cho việc quan sát Trái đất rắn. Các khu khực dạng tuyến kéo dài trên Trái đất có thể được giải thích đó là ranh giới giữa các mảng.[13] Các sống núi giữa đại dương, là các khu vực cao trong đáy biển, tại đây tồn tại các quá trình thủy nhiệt và hoạt động núi lửa cũng được giải thích đó là ranh giới tách giãn. Các vòng cung núi lửa và các trận động đất cũng được giải thích đó là ranh giới hội tụ, nơi mà một mảng bị hút chìm dưới một mảng. Ranh giới biến dạng, như hệ thống đứt gãy San Andreas, tạo ra các trận động đất mạnh và thường xuyên. Kiến tạo địa tầng cũng góp phần làm sáng tỏ cơ chế thuyết trôi dạt lục địa của Alfred Wegener[14], theo đó, các lục địa di chuyển trên mặt Trái đất trong suốt thời gian địa chất. Kiến tạo địa tầng cũng nêu ra các tự tác động làm biến dạng và trạng thái mới của vỏ Trái đất trong việc nghiên cứu địa chất cấu tạo. Điểm mạnh của thuyết kiến tạo địa tầng là hợp thức hóa việc kết hợp các học thuyết riêng lẻ về cách thức mà thạch quyển di chuyển trên các dòng đối lưu của manti. Dựa trên học thuyết này, hiện tại, người ta đã làm rõ được lịch sử phát triển địa chất Trái Đất nói chung và địa chất khu vực nói riêng. Tiến hóa địa chất khu vực Các lớp đá trầm tích nguyên thủy bị ảnh hưởng bởi hoạt động mácma. Bên dưới bề mặt là lò mácma (13) và các thể xâm nhập lớn (12,14). Lò mácma cung cấp mácma cho núi lửa (1), và kết tinh thành các dike (10) và sill (8,9). Mácma cũng dâng lên tạo thành các dạng đá xâm nhập (11). Sơ đồ minh họa của nón núi lửa phun tro (3) và núi lửa hỗn hợp (1) phun cả dung nham và tro (2). Tiến hóa địa chất khu vực là sự hình thành các loại đá trong một khu vực tuân theo chu trình thạch học và các quá trình tác động lên chúng làm chúng bị biến dạng và thay đổi vị trí. Sự biến đổi đổi này được thể hiện bởi các dấu vết được lưu lại trên các đơn vị địa chất. Các đơn vị đá đầu tiên được hình thành hoặc bởi sự tích tụ trên bề mặt hoặc xâm nhập vào trong các lớp đá khác. Sự tích tụ có thể xảy ra khi trầm tích lắng đọng trên bề mặt Trái đất và sau đó hóa đá tạo thành đá trầm tích, hoặc khi vật liệu núi lửa nhưtro núi lửa hoặc các dòng dung nham phủ lên bề mặt. Đá xâm nhập như batholith, laccolith, dike, và sill, xâm nhập vào các đá, và kết tinh tại đó. Hình minh họa ba loại đứt gãy (phay). (1) Đứt gãy ngang (bình đoạn tầng), (2) Đứt gãy thuận (phay thuận) và (3) Đứt gãy nghịch (phay nghịch). Sơ đồ minh họa các nếp uốn, gồm (1) trục nếp uốn, (2)nếp uốn lồi và (3) nếp uốn lõm. Mặt cắt địa chất của Núi Kittatinny. Mặt cắt này hiển thị các đá biến chất, bị phủ bởi các đá trầm tích trẻ hơn sau khi biến chất xảy ra. Các đá này sau đó bị uốn nếp và đứt gãy trong quá trình nâng lên thành núi. Sau khi một chuỗi các đá ban đầu được tạo ra, các đá này có thể bị biến dạng và biến chất. Sự biến dạng tạo ra bởi sự căng giãn, sự nén ép, hoặc bình đoạn tầng (phay ngang). Các cơ chế này liên quan đến các ranh giới hội tụ, ranh giới phân kỳ, và ranh giới chuyển dạng giữa các mảng kiến tạo. Khi đá chịu tác động bởi lực nén ngang, chúng trở nên ngắn và dày hơn. Bởi vì các đá ít bị biến dạng về thể tích, và ứng xử theo hai cách là tạo thành đứt gãy và uốn nếp. Trong các phần nông của vỏ trái đất, thường xảy ra biến dạng giòn, hình thành các đứt gãy nghịch, đây là trường hợp các đá ở sâu di chuyển lên trên các đá ở trên. Các đá ở sâu thường cổ hơn, theo nguyên tắc chồng lớp, lại di chuyển lên nằm trên các đá trẻ hơn. Sự dịch chuyển dọc theo đứt gãy có thể tạo ra nếp uốn, hoặc do các đứt gãy không có mặt phẳng, hoặc do các lớp đá trượt dọc theo nó, tạo thành các nếp uốn kéo, khi trượt xuất hiện dọc theo đứt gãy. Các đá nằm sâu hơn trong lòng đất thì có ứng xử như vật liệu dẻo, và tạo ra nếp uốn thay vì đứt gãy. Các nếp uốn này có thể hoặc là nếp uốn lồinếu lõ của nếp uốn trồi lên hoặc nếp uốn lõm khi lõi bị hạ thấp. Nếu một số phần của nếp uốn bị sụt xuống, thì cấu trúc này được gọi là nếp lồi đảo hoặc nếp lõm đảo. Khi đá chịu nép ép ở nhiệt độ và áp suất cao hơn có thể gây uốn nếp và biến chất đá. Sự biến chất có thể làm thay đổi thành phần khoáng vật của đá; sự phân phiến liên quan đến các khoáng vật được phát triển khi chịu nén; và vó thể làm mất đi cấu tạo ban đầu của đá, như đá gốc trong đá trầm tích, dạng dòng chảy của dung nham, và cấu tạo kết tinh của đá kết tinh. Căng giãn làm cho các đá trở nên dài và mỏng hơn, và thường tạo ra các đứt gãy thuận. Sự căng giãn làm các đá mỏng hơn: như ở vùng nếp uốn và đai đứt gãy nghịch Maria, được cấu tạo toàn bộ là trầm tích của Grand Canyon có thể quan sát được chiều dài nhỏ hơn 1m. Các đá ở độ sâu dễ bị kéo giãn cũng thường bị biến chất. Các đá bị kéo giãn cũng có thể tạo thành dạng thấu kính, được gọi là boudin, sau này tiếng Pháp gọi là "xúc xích", vì chúng nhìn giống nhau. Khi các đá bị dịch chuyển tương đối nhau theo mặt phẳng thì gọi là đứt gãy ngang, các đứt gãy này phát triển trong các khu vực nông, và trong đới cắt ở sâu hơn khi đá bị biến dạng dẻo. Khi các đá mới hình thành, cả tích tụ và xâm nhập, thường tạo ra sự biến dạng. Khi đó sẽ thình thành các đứt gãy và gây ra các biến dạng khác làm cho địa hình phân dị, từ đó xuất hiện sự xâm thực, bào mòn dọc theo sườn và các dòng chảy. Quá trình này tạo ra các trầm tích, và sau đó chúng được lắng đọng và nhấn chìm. Trong trường hợp sự dịch chuyển dọc theo đứt gãy diễn ra liên tục sẽ duy trì sự gia tăng gradient địa hình một cách liên tục và tiếp tục tạo ra các khoảng không gian cho trầm tích lắng đọng. Các sự kiện biến dạng thường liên quan đến các hoạt động xâm nhập và núi lửa. Tro núi lửa và dung nham lắng đọng trên bề mặt, còn sự xâm nhập thì tạo thành các đá nằm bên dưới mặt đất. Ví dụ như xâm nhập kiểu dike là sự xâm nhập theo mặt phẳng thẳng đứng và kéo dài, và thường gây ra các biến dạng trên quy mô rộng lớn. Loại này có thể quan sát ở khiên Canada, hay vòng dike xung quanh ống dung nham núi lửa. Tất cả các quá trình này không nhất thiết phải xảy ra trong một môi trường, và không xuất hiện riêng lẻ. Quần đảo Hawaii, là một ví dụ gồm hầu hết là dung nham bazan. Các loạt trầm tích giữa lục địa ở Hoa Kỳ và vùng Grand Canyon ở tây nam Hoa Kỳ còn sót lại các ống khói bằng đá trầm tích hầu như không bị biến dạng có tuổi Cambri. Các khu vực khác có đặc điểm địa chất phức tạp hơn: ở vùng tây nam Hoa Kỳ, các đá trầm tích, đá núi lửa và đá xâm nhập đều bị biến chất, đứt gãy, và uốn nếp. Thậm chí các đá có tuổi cổ hơn như đá gơnai Acasta thuộc nền cổ Slav ở tây bắc Canada, đá cổ nhất trên thế giới đã bị biến chất tại điểm mà nguồn gốc của nó không thể nhận ra được bằng các phân tích trong phòng thí nghiệm. Thêm vào đó, các quá trình này có thể xảy ra trong nhiều giai đoạn. Ở một vài nơi, Grand Canyon ở tây nam Hoa Kỳ là một ví dụ đơn giản nhất, các đá nằm bên đưới bị biến chất và biến dạng, và sau đó sự biến dạng kết thúc; còn phần trên, các đá không bị biến dạng thì được tích tụ. Mặc dù số lượng các đá được thay thế và biến dạng có thể xảy ra và chúng có thể xuất hiện nhiều lần, thì các khái niệm này vẫn cung cấp những hiểu biết về lịch sử của một khu vực. Cấu tạo của Trái Đất và địa chất hành tinh Cấu tạo của Trái Đất Bài chi tiết: Cấu trúc Trái Đất Cấu tạo các lớp của Trái đất. (1) nhân trong; (2) nhân ngoài; (3) manti dưới; (4) manti trên; (5) thạch quyển; (6) vỏ Cấu tạo các lớp của Trái đất. Các đường đi của sóng đặc biệt từ các trận động đất theo quan điểm của các nhà địa chấn học trước đây trong cấu tạo lớp của Trái đất Các tiến bộ về địa chấn học, mô hình trên máy tính, và khoáng vật học-tinh thể học ở nhiệt độ và áp suất cao cũng đã cho bức tranh về thành phần và cấu tạo bên trong của Trái đất. Các nhà địa chấn học có thể sử dụng thời gian đến của các sóng địa chất phản hồi để hình dung cấu tạo bên trong của Trái đất. Các khám phá trước đây trong lĩnh vực này cũng đã cho thấy nhân ngoài ở thể lỏng (tại đây sóng cắt (S) không thể truyền qua) và nhân trong ở thể rắn đặc sít. Các phát hiện này đã phát triển mô hình lớp của Trái đất gồm lớp vỏ và thạch quyển ở trên cùng, manti ở dưới (được phân chia bởi sự gián đoạn sóng địa chấn ở độ sâu 410 đến 660 km), và nhân ngoài và nhân trong ở bên dưới. Gần đây, các nhà địa chấn có thể tạo ra các bức ảnh chi tiết về tốc độ truyền sóng trong trái đất giống như các bức ảnh mà bác sĩ chụp cơ thể người bằng máy quét CT. Các bức ảnh này cho nhiều thông tin chi tiết về cấu tạo của Trái đất và có thể thay thế mô hình lớp được đơn giản bằng mộ mô hình mang tính động lực hơn. Các nhà khoáng vật học cũng có thể sử dụng dữ liệu áp suất và nhiệt độ từ các nghiên cứu về địa chấn và mô hình cùng với sự hiểu biết về thành phần nguyên tố cấu tạo nên Trái đất bằng cách tái tạo các điều kiện này bằng thực nghiệm và đo đạc các biến đổi trong cấu trúc tinh thể. Các nghiên cứu này giải thích các biến đổi hóa học liên quan đến sự gián đoạn địa chấn quan trọng trong manti, và cho thấy các cấu trúc tinh thể học dự đoán trong nhân trong của Trái đất. Địa chất học hành tinh Bề mặt Sao Hỏa được chụp bởi Viking 2 ngày 9 tháng,1977. Bài chi tiết: Địa chất học hành tinh và Địa chất học các hành tinh thuộc đất trong hệ mặt trời Đầu ngữ geo theo tiếng gốc Hi Lạp có nghĩa là Trái đất, còn thuật ngữ "địa chất" ("geology") thường được sử dụng chung với tên của các hành tinh khác khi mô tả thành phần và các quá trình nội sinh của chúng như: "địa chất Sao Hỏa" và "địa chất mặt trăng". Các thuật ngữ đặc biệt như selenology (nghiên cứu mặt trăng), areology (của Sao Hỏa) cũng được sử dụng. Cùng với sự tiến bộ về khám phá không gian trong thế kỷ 20, các nhà địa chất đã bắt đầu nghiên cứu đến các hành tinh khác có dạng giống như trái đất. Các nghiên cứu này đã sinh ra nhánh địa chất học hành tinh, đôi khi còn được gọi là địa chất học vũ trụ, theo đó các nguyên tắc địa chất học được áp dụng để nghiên cứu các hành tinh khác trong hệ mặt trời. Mặc dù các nhà địa chất học hành tinh cũng quan tâm đến bề mặt của các hành tinh, nhưng chỉ chú ý đến sự sống trong quá khức và hiện tại của các thế giới khác. Điều này đã đặt ra một số nhiệm vụ với mục tiêu (một trong những mục tiêu) là tìm hiểu sự sống trên các hành tinh. Ví dụ như Tàu Phoenix lander đã phân tích đất ở cực Martian (Sao Hỏa) để tìm kiếm nước, các hợp chất hóa học và khoáng vật liên quan đến các quá trình sinh học. Thời gian địa chất

Các file đính kèm theo tài liệu này:

  • pdfdia_chat_hoc_3688.pdf
Tài liệu liên quan