Người ta thường dùng dầu nhờn để giảm bớt ma sát giữa các bề mặt của các chi
tiết máy khi chúng chuyển động tương đối với nhau. Khi đó xảy ra hiện tượng: lưu
chấtbôi trơn dính bám vào bề mặt của chi tiết này chuyển động tương đối so với chi
tiết kia thì lưu chấtbôi trơn bị cuốn theo. Chuyển động như vậy của lưu chấtgọi là
chuyển động do ma sát. Thông thư ờng dòng lưu chất chảy như vậy có tính chất
tầng. Mặc dầu có lưu chất bôi trơn, nhưng bây giờ lực cản trở chuyển động của các
chi tiết máy là lực ma sát sinh ra trong nội bộ lưu chất bôi trơn.
16 trang |
Chia sẻ: thienmai908 | Lượt xem: 1505 | Lượt tải: 0
Nội dung tài liệu Chuyển động một chiều của lưu chất không nén được, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
CHƯƠNG V
CHUYỂN ĐỘNG MỘT CHIỀU CỦA LƯU CHẤT
KHÔNG NÉN ĐƯỢC
5.1 Tổn thất năng lượng trong dòng chảy.
Số hạng hw trong phương trình Bernoulli là năng lượng tính cho một đơn vị
trọng lượng lưu chất của dòng chảy bị tiêu hao để khắc phục các sức cản trong quá
trình chuyển động. hw được gọi là tổn thất năng lượng đơn vị hay tổn thất cột áp.
Tổn thất năng lượng có hai dạng : tổn thất dọc đường (hd) và tổn thất cục bộ (hc).
Tổn thất dọc đường là tổn thất xảy ra dọc theo đường di chuyển của dòng chảy. Tổn
thất cục bộ là tổn thất xảy ra tập trung tại một nơi nào đó của dòng chảy, ví dụ tại
khóa, van, lưới lọc hoặc tại nơi ống mở rộng, co hẹp hay uốn khúc đột ngột…
Ta coi như các tổn thất xảy ra độc lập với nhau và có thể viết :
hw = ∑hd + ∑hc (5-1)
Tổn thất năng lượng trong các dòng chảy phụ thuộc nhiều vào trạng thái chảy
của chúng. Vì vậy trước tiên cần nghiên cứu cấu trúc nội bộ của dòng chảy tương
ứng trong mỗi trạng thái chảy.
5.1.1 Thí nghiệm Reynolds. Các trạng thái của dòng chảy.
Năm 1883 nhà vật lý học người Anh Reynolds bằng thí nghiệm đã phát hiện ra
sự tồn tại hai trạng thái chảy khác biệt nhau một cách rõ rệt về mặt cấu trúc nội bộ
dòng chảy. Thí nghiệm Reynolds được trình bày sơ lược ở hình 5-1.
Thùng A chứa lưu chất kiểm tra. Thùng B đo lưu lượng. Thùng C chứa nước
màu (chất lỏng ≈ nước màu).
Hình 5-1
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Trong quá trình thí nghiệm cần giữ cho mực nước ở thùng A không đổi và yên
tĩnh. Mở khóa K1 từ từ rồi mở khóa K2 cho dòng nước chảy vào ống. Lúc đầu tương
ứng với vận tốc dòng chảy còn nhỏ, ta thấy dòng màu như “một sợi chỉ căng” dọc
theo trục ống. Điều đó chứng tỏ dòng màu và dòng lưu chất chảy riêng rẽ không
xáo trộn lẫn nhau. Tăng dần vận tốc dòng chảy trong ống bằng cách tiếp tục từ từ
mở khóa K1 đến một lúc nào đó thì dòng màu sẽ biến dạng, đứt quãng rồi hòa lẫn
vào trong dòng lưu chất.
Trạng thái dòng chảy trong đó các phần tử lưu chất chảy thành từng lớp riêng rẽ
gọi là trạng thái chảy tầng.
Trạng thái dòng chảy trong đó các phần tử lưu chất chuyển động hỗn loạn gọi là
trạng thái chảy rối.
Trạng thái dòng chảy trung gian giữa hai trường hợp trên gọi là trạng thái quá
độ. Trạng thái quá độ thường tồn tại trong một thời gian rất ngắn và không ổn định.
Nếu tiến hành thí nghiệm ngược lại, nghĩa là giảm dần vận tốc dòng chảy trong
ống bằng cách từ từ đóng khóa K1 thì đến một lúc nào đó sợi chỉ màu sẽ xuất hiện
trở lại.
Gọi vận tốc dòng chảy ứng với lúc chuyển từ trạng thái chảy tầng sang chảy rối
là vận tốc phân giới trên (vtfg). Vận tốc ứng với lúc chuyển từ trạng thái chảy rối về
chảy tầng là vận tốc phân giới dưới (vdfg). Vận tốc phân giới phụ thuộc vào loại lưu
chất và đường kính ống, nhưng luôn luôn tồn tại vtfg > vdfg. Vì vậy không thể dùng
vận tốc phân giới làm tiêu chuẩn phân biệt trạng thái chảy cho mọi loại lưu chất và
mọi loại đường kính.
Thí nghiệm với nhiều loại lưu chất và đường kính ống khác nhau, Reynolds
nhận thấy rằng : trạng thái chảy phụ thuộc vào một tổ hợp không thứ nguyên gồm
vận tốc trung bình của dòng chảy v, đường kính ống d, độ nhớt của lưu chất ν. Đó là
số Reynolds (ký hiệu là Re).
Re = vd
ν
(5-2)
Hoặc tính theo bán kính thủy lực :
ReRh = vRh
ν
(5-3)
Số Re được dùng làm tiêu chuẩn phân biệt trạng thái dòng chảy. Ứng với vận
tốc phân giới trên (vtfg) có số Reynolds phân giới trên (Retfg). Ứng với vận tốc phân
giới dưới (vdfg) có số Reynolds phân dưới (Redfg).
Trạng thái chảy ứng với Re < Retfg bao giờ cũng là chảy tầng. Trạng thái chảy
ứng với Re > Redfg bao giờ cũng là chảy rối. Còn khi Redfg < Re < Retfg dòng chảy
có thể chảy tầng hoặc chảy rối, nhưng thường là chảy rối vì lúc này trạng thái chảy
tầng không bền.
Qua nhiều thí nghiệm, người ta thấy Retfg dao động từ 12.000 đến 50.000, trong
khi đó Redfg đối với mọi loại lưu chất và đường kính ống khác nhau đều bằng 2320.
Vì vậy Redfg được dùng làm tiêu chuẩn phân biệt trạng thái dòng chảy.
Tức là :
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Hình 5-2
Dòng chảy có Re 2320 hoặc ReRh 580 thì chảy tầng.
Dòng chảy có Re > 2320 hoặc ReRh > 580 thì chảy rối.
5.1.2 Tổn thất năng lượng dọc đường
a. Theo thí nghiệm của Reynolds
Quan sát sự thay đổi của độ chênh cột lưu chất h giữa hai ống đo áp theo vận
tốc trên thí nghiệm hình 5-1, đó cũng chính là tổn thất dọc đường của đoạn dòng
chảy giữa hai ống đo áp, người ta nhân được kết quả sau:
Đối với chảy tầng :
hd = k1v (5-4)
Đối với chảy rối :
hd = k2vm (5-5)
k1, k2 là hằng số tỷ lệ, m = 1,7 2 trong đoạn
quá độ AC và m = 2 trong đoạn chảy rối CD
(hình 5-2).
b. Công thức tổng quát của Darcy.
Thực nghiệm chứng tỏ rằng lớp lưu chất mỏng sát thành coi như dính chặt vào
thành nghĩa là vận tốc các phần tử lưu chất tiếp xúc với thành rắn bằng không. Mặt
khác khi dòng lưu chất chuyển động, các lớp, các phần tử của chúng có thể trượt lên
nhau hoặc có thể chuyển động rối loạn, va chạm lẫn nhau nếu là dòng chảy rối, do
đó gây nện lực cản làm tiêu hao năng lượng của dòng chảy. Phân tích các yếu tố
ảnh hưởng đến tổn thất dọc đường, Darcy đã lập ra công thức tính tổn thất dọc
đường cho dòng chảy đều trong ống tròn :
hd =
l
d
v2
2g
(5-6)
: Hệ số ma sát, phụ thuộc vào số Re và tình trạng thành rắn giới hạn dòng
chảy. Có thể dùng công thức này cho dòng chảy không áp bằng cách thay d = 4Rh :
hd =
l
4Rh
v
2
2g
(5-7)
5.1.3 Tổn thất năng lượng cục bộ
Khi đổi hướng đột ngột hay vấp phải vật cản cục bộ, dòng chảy bị tách ra khỏi
thành rắn và xuất hiện khu vực xoáy. Tại mặt phân chia giữa dòng chính và khu vực
xoáy xảy ra sự rối loạn của các phần tử lưu chất. Vì vậy, tại những nơi này dòng
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
chảy bị tiêu hao năng lượng khá lớn. Người ta thường dùng công thức của
Weisbach để tính tổn thất cục bộ :
hc = c v
2
2g
(5-8)
c : Hệ số tổn thất cục bộ thường được xác định bằng thực nghiệm, phụ thuộc
vào số Re và đặc trưng hình học của vật cản.
v : Vận tốc trung bình, thông thường lấy ở hạ lưu vật cản.
a. Tổn thất cục bộ đột mở.
dm =
2
1
2 1
S
S
(5-9)
hdm =
2
1
2 1
S
S
v2
2
2g
=
g2
v
S
S1
2
2
2
2
1
(5-10)
Trong trường hợp lưu chất chảy từ ống vào bể thì S1 << S2 nên :
hvb = v1
2
2g
(5-11)
b. Tổn thất cục bộ đột thu.
dt = 0,5
1
2
S
S1 (5-12)
hdt = 0,5
1
2
S
S1 v2
2
2g
(5-13)
Trường hợp lưu chất chảy từ bể vào ống thì S1>>S2 nên :
hv0 = 0,5v2
2
2g
(5-14)
Nếu mép thuận tròn thì v0 = 0,02 0,05
S2 v2 S1 v1
Hình 5-3
S2 v2 S1 v1
Hình 5-4
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
c. Tổn thất cục bộ qua chỗ uốn cong đều
u = 90R
d163,0131,0
05,3
(5-15)
hu = u v
2
2g
(5-16)
d. Tổn thất cục bộ qua khóa, van
hK = K v
2
2g
(5-17)
K phụ thuộc vào loại khóa, van và độ mở của khóa, van.
e. Tổn thất cục bộ qua ngã ba dòng chảy.
hn = n v
2
2g
(5-18)
Hệ số n có thể lấy gần đúng theo kinh nghiệm như sau :
5.2 Dòng chảy tầng có áp trong ống tròn
Lưu chất có độ nhớt lớn như các loại dầu chuyển động trong hệ thống đường
ống của máy móc thường ở trạng thái chảy tầng.
Để tìm công thức tính tổn thất năng lượng dọc đường của dòng chảy trước tiên
ta phải nghiên cứu quy luật phân bố ứng suất tiếp và vận tốc trên mặt cắt ướt của
nó.
Hình 5-
6
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
5.2.1 Quy luật phân bố ứng suất tiếp và vận tốc trên mặt cắt ướt.
Ta tách ra từ trong dòng chảy một phân tố lưu chất hình trụ đồng trục với ống,
có chiều dài l, bán kính r (hình 5-7).
Lực tác dụng lên phân tố gồm có : áp lực ở đầu và cuối phân tố P1, P2; trọng
lượng của phân tố lưu chất G; lực ma sát T. Viết phương trình cân bằng các lực tác
dụng lên phân tố theo phương dòng chảy :
P1 – P2 + Gsin - T = 0
Hay :
p1πr2 – p2πr2 - πr2l l
zz 12 - τ2πrl = 0
Chia hai vế của phương trình trên cho πr2 ta được :
p1
– p2
+ z1 – z2 – 2τ
l
r = 0
Vì dòng chảy đều v = const nên :
hw =
22
1
1
pzpz và ta có J = hw
l
, do đó :
τ = J r2 (5-19)
Phương trình (5-19) chứng tỏ rằng ứng suất tiếp phát sinh trong dòng chảy tỉ lệ
bậc nhất với bán kính ống. Khi r = r0 ta có ứng suất tiếp tại thành ống :
Hình 5-7
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
τ = J r0
2
= JRh (5-20)
r0 : Bán kính trong của ống.
Phương trình (5-20) gọi là phương trình cơ bản của chuyển động đều trong ống
tròn. So sánh (5-19) với (5-20) rút ra :
τ = τ0
r
r0
(5-21)
Thay τ = - dudr vào (5-19) :
- dudr = J
r
2 du =
J
2 rdr
u = - J4 r
2 + C
Từ điều kiện biên r = r0; u = 0 C =
J
4r0
2 , do đó :
u = J4(r0
2 – r2) (5-22)
Từ (5-22) ta thấy vận tốc trên mặt cắt ướt phân bố theo luật Parabol.
Tại trục ống r = 0 có u = umax .
umax =
J
4r0
2 (5-23)
u = umax
2
0
2
r
r1 (5-24)
Từ đó có thể xác lập sự liên hệ giữa umax và v như sau:
Hình 5-8
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Ta xét lưu chất qua một diện tích rất nhỏ hình vành khăn dS, bán kính r, tại đó
vận tốc lưu chất bằng u.
dQ = udS = 2πurdr
Lưu chất qua toàn mặt cắt S bằng :
Q =
0r
0S
urdr2dQ = 2πumax rdr
r
r1
0r
0
0
2
2
= πr0
2
2
umax
Suy ra :
v =
0
2r
Q
= umax
2
= Jγ8 r0
2 = Jγ8d
2 (5-25)
5.2.2 Tổn thất năng lượng dọc đường và công thức tính hệ số ma sát
Từ (5-25) rút ra :
J = 2d
v32
hd = Jl = g2
v
d
l
vd
64 2
hd = g2
v
d
l
Re
64 2 (5-26)
So sánh (5-26) với công thức Darcy, ta thấy:
= 64Re (5-27)
Biểu thức trên chứng tỏ trường hợp chảy tầng trong ống tròn hệ số ma sát chỉ
phụ thuộc vào số Re theo quan hệ tỷ lệ nghịch.
Thay Re = vd
ν
và v = 2d
Q4
vào (5-26) ta có :
hd = 4gd
lQ128
(5-28)
Đối với ống nằm ngang, thay hd =
Δp
vào (5-28) ta có :
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Δp = 4d
lQ128
(5-29)
Biểu thức (5-29) biểu thị định luật Hagen- Poise : trong dòng chảy tầng đều, độ
chênh áp tỷ lệ thuận với lưu chất dòng chảy và chiều dài ống, tỷ lệ nghịch bậc bốn
với đường kính ống.
5.2.3 Hệ số hiệu chỉnh động năng.
Ở chương 4 ta đã có biểu thức :
α =
u3 dS
v3 S
Thay u bằng biểu thức (5-22) ; Ds = 2πrdr và v = Jγ8µ r
0
2
ta được:
α = 2 (5-30)
5.2.4 Đoạn ban đầu của dòng chảy tầng.
Các biểu thức ( 5-27 ) vá ( 5-30 ) chỉ đúng với dòng chảy tầng đã hoàn chỉnh,
tức là dòng chảy có vận tốc phân bố theo quy luật parabol, nhưng không đúng với
phần ban đầu của dòng chảy tầng, tại đó dòng chảy tầng đang tiến dần tới hoàn
chỉnh.
Nhiều thực nghiệm cho thấy rằng dòng chảy tầng chỉ hoàn chỉnh khi đã chảy xa
miệng của ống một đoạn nhất chỉnh.
Hình 5-9 nghiên cứu sơ lược sự hình thành của dòng chảy tầng trong ống.
Hình 5-9
Tại miệng vào vận tốc hầu như phân đều trên mặt cắt ướt vì chưa bị thành ống
cản trở. Ngay sau đó, lớp lưu chất ngoài cùng dính chặt vào thành ống nên vận tốc
của nó giảm đột ngột đến không. Đồng thời với hiện tượng trên, trong các lớp giữa
của dòng chảy xảy ra hiện tượng ngược lại: vì dòng lưu chất là ổn định và liên tục,
nghĩa là lưu chất qua mặt cắt ướt đều như nhau nên khi các lớp lưu chất bên ngoài
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
bị kìm hãm thì các lớp bên trong buộc phải chuyển động nhanh lên. Kết qua là biểu
đồ phân bố áp suất trên mặt cắt ướt càng vào sâu trong ống càng bị kéo dài ra cho
đến khi hình thành sự phân bố vận tốc theo quy luật parabol.
Người ta thường dùng công thức của Schiller để xác định chiều dài đoạn ban
đầu:
L bđ = 0,02875d Re (5-31)
Trong đọan ban đầu ≠ 2 và λ ≠ 64Re
Bằng thực nghiệm, người ta đã chứng minh được là tổn thất năng lượng dọc
đường trong đoạn ban đầu lớn hơn trong đoạn dòng chảy tầng đã hoàn chỉnh.
Frenken đề nghị tính theo công thức sau:
λ =
A
Re (5-32)
Giá trị hệ số A và đối với những mặt cắt khác nhau trong phần đầu của dòng
chảy tầng được cho trong bảng dưới.
103 x/dRe 0 2,5 5 7,5 10
A 120 106 96 88
α 1 1,4 1,54 1,66 1,76
103 x/dRe 12,5 1,5 17,5 20 25 28,75
A 84 80 76 74 71,5 69,6
α 1,8 1,84 1,87 1,9 1,96 2
5.3 Dòng chảy rối có áp trong ống tròn
5.3.1 Cấu trúc dòng chảy rối
Cấu trúc dòng chảy rối phức tạp hơn dòng chảy tầng rất nhiều. dòng chảy rối
trong ống gồm hai bộ phận chính: lõi rối ở giữa và lớp chảy tầng sát thành. Giữa hai
đó có lớp quá độ.
Hình 5-10
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Chiều dài của lớp chảy tầng sát thành tính theo thực nghiệm:
δ t =
30d
Re λ
(5-33)
Trong lõi rối các phân tử lưu chất chuyển động rất hổn loạn. Vận tốc điểm
không những thay đổi trị số mà còn thay đổi cả về hướng theo thời gian. Nếu trong
một thời gian tương đối dài, ta thấy vận tốc u thay đổi xung quanh một trị số không
đổi ū, ta gọi ū là vận tốc trung bình thời gian. Hiện thay đổi vận tốc không ngừng
xung quanh vận tốc trung bình gọi là hiện tượng mạch động của vận tốc. Đi đôi với
hiện tượng mạch động của vận tốc là hiện tượng mạch động của áp suất.
Để nghiên cứu quy luật của chuyển động của dòng chảy rối được dễ dàng, người
ta thay đổi dòng chảy rối thực bằng dòng chảy rối trung bình thời gian, trong đó
không nghiên cứu vận tốc thực mà nghiên cứu vận tốc theo trung bình thời gian.
5.3.3 Quy luật phân bố ứng suất tiếp và vận tốc trên mặt cắt ướt
Ứng suất tiếp phát sinh trong dòng chảy tỉ lệ nghịch bậc nhất với bán kính ống
như ở dòng chảy tầng theo công thức (5-21).
Cho đến nay, về phân bố vận tốc trong dòng chảy rối vẫn chưa có công thức dựa
trên lý luận chặt chẽ. Qua thực nghiệm và giả thuyết của Prandlt, người ta tìm được
công thức gần đúng so với kết quả đo đạc: vận tốc trên mặt cắt ướt phân bố theo
quy luật parabol ở lớp mỏng chảy tầng. ở lớp chảy rối theo quy luật logarit:
ū = u max – 5,75U *lg
r 0
r
Trong đó:
U * =
τ
ρ
= gR hJ
u max tính theo công thức của Frenken, trên cơ sở thí nghiệm dóng chảy trong
ống thành trơn:
u max = ( 5,1.lgR e - 0,5 )U *
Vận tốc trung bình v = 0,825 u max
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Hình 5-11
5.3.3 Xác định hệ số ma sát λ
a. Thành trơn và nhám thủy lực.
Mặt trong của thành ống dù làm bằng vật liệu gì cũng có những mố gồ ghề.
Những mố gồ ghề này lớn hay nhỏ là phụ thuộc vào điều kiện gia công, vật liệu chế tạo,
thời gian và điều kiện sử dụng ống.
Độ cao trung bình của những mố gồ ghề gọi là độ nhám tuyệt đối, kí hiệu là ∆.Tỷ
số ∆r o
gọi là độ nhám tương đối.
Nếu δ t > ∆ : lớp chảy tầng sẽ phủ kín những mố gồ ghề trên mặt thành ống,vì
vậy dòng chảy không bị các mố gồ ghề cản trở và thành ống như vậy được gọi là
thành trơn thủy lực.
Nếu δ t < ∆ : các mố nhám sẽ nhô lên khỏi lớp chảy tầng, cản trở dòng chảy,
thành ống như vậy gọi là thành nhám thủy lực.
Hình 5-12
b. Các công thức tính hệ số ma sát
*Khu vực chảy rối thành trơn thủy lực:
Khi 2320 < Re < Re ghtrơn =
d
∆
8/7
+ Công thức Blasius:
λ = 0,3164Re0,25
(5-34)
+ Công thức Kônacôp:
λ = 1( )1,8lgRe-1,5 2
(5-35)
* Khu vực chảy rối thành không hoàn toàn nhám:
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
Khi Re ghtrơn < Re < Re ghnhám = 191
d
∆ λ
+ Công thức Antơsun:
λ = 1
1,46∆d+
100
Re
0,25
(5-36)
* Khu vực chảy rối thành nhám (khu vực bình phương sức cản): Re < Re ghnhám
+ Công thức Frenken:
λ = 1
lg3,7d
∆
2 (5-37)
+ Công thức Nicurat:
λ = 1
2lgd
∆
+1,14
2 (5-38)
Với ống dẫn nước cũ, thép hoặc gang sử dụng lâu năm (∆ = 1mm) thì:
λ = 0,02d1/3
(5-39)
Có thể sử dụng đồ thị thực nghiệm của Moody để xác định hệ số ma sát đối với
các ống mới có trên thị trường.
5.4 Dòng chảy tầng do ma sát trong khe hẹp. Sơ lược về lý luận bôi
trơn thủy động lực
Người ta thường dùng dầu nhờn để giảm bớt ma sát giữa các bề mặt của các chi
tiết máy khi chúng chuyển động tương đối với nhau. Khi đó xảy ra hiện tượng: lưu
chất bôi trơn dính bám vào bề mặt của chi tiết này chuyển động tương đối so với chi
tiết kia thì lưu chất bôi trơn bị cuốn theo. Chuyển động như vậy của lưu chất gọi là
chuyển động do ma sát. Thông thường dòng lưu chất chảy như vậy có tính chất
tầng. Mặc dầu có lưu chất bôi trơn, nhưng bây giờ lực cản trở chuyển động của các
chi tiết máy là lực ma sát sinh ra trong nội bộ lưu chất bôi trơn.
Trước kia, khi tính toán lực ma sát giữa trục và ổ trục, người ta vẫn dùng công
thức của ma sát khô. Đến năm 1883 giáo sư Petrôp, người Nga đã lập ra lý thuyết
bôi trơn thủy động lực. Ông đã xét trường hơp đơn giản nhất với giả thiết trục và ổ
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
trục được đặt đồng trục với nhau, giữa chúng có một lớp bôi trơn, chiều dày không
đổi δ. Điểm càng xa vận tốc tiếp càng nhỏ và đến ổ trục thì bằng không.
Theo giả thiết của Newton, ứng suất tiếp của lớp dầu nhờn:
τ = µdudr
Lực ma sát giữa trục và lớp dầu bôi trơn:
T = τ.S =µ2πrldudr
Trong lớp mỏng chảy tầng ta có thể thay dudr =
u
δ
nên:
T = µ 2πrlu
δ
(5-69)
Công thức chính xác hơn là:
T = µ 2πrlu
δ+µ
λ 1
+µ
λ 2
λ 1, λ 2 là hệ số ma sát giữa dầu với ổ trục và với trục.
Thí nghiệm cho thấy lớp dầu sát bề mặt trục và ổ trục bám rất chắc nên hầu như
không có sự trượt tương đối giữa lớp dầu với mặt trục và ổ trục. nghĩa là λ 1 và
λ 2 rất lớn, có thể bỏ qua
µ
λ 1
và µ
λ 2
.
Thay u = ωr = 2πn60 r ( n tính bằng v/f ) vào (5-69), ω là vận tốc quay của trục, ta
có:
T = µπ
2
r2 ln
15δ
(5-70)
Ta thấy lực ma sát không vào loại lưu chất mà còn phụ htuộc vào chiều dày của
lớp bôi trơn.
Mômen của lực ma sát:
M T = T.r = µ
π2 r3 ln
15δ
(5-71)
Công suất bị tiêu hao lực ma sát :
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
N T = M T.ω = µ
π3 r3 ln2
450δ
(5-72)
Hình 5-19
Trong thực tế do tải trọng tác dụng lên làm cho trong quá trìng chuyển động.
Năm 1886, Jukôpxki cho rằng sự lệch tâm đó tạo nên áp lực động trong động, trục
và ổ trục luôn luôn lệch tâm nên giả thiết của Petrôp không chính lớp dầu bôi trơn (
hình 5-19 ).
Ở tư thế nghỉ, dưới tải trọng bản thân, trục tựa lên ổ trục tại một điểm N. Dầu bị
đẩy sang hai bên, ví vậy trục và ổ trục bị tiếp xúc khô. Khi bắt đầu chuyển động,
mômen khởi động phải khắc phục ma sát khô. Sau đó trục lăn trên ổ trục đến điểm
M. Ta biết rằng dầu bám vào bề mặt trục và ổ trục nên vận quay càng tăng dầu càng
bị dồn đến tụ ở M. Bắt đầu ở từ một vận tốc quay nào đó, áp suất của màng dầu đủ
sức nâng trục lên và trục sẽ di chuyển đến vị trí khác. Lúc đó không còn tiếp xúc
giữa trục và ổ trục và xảy ra hiện tượng bôi trơn thủy động lực. Tải trọng P của trục
được đỡ bởi áp lực phân bố trong lớp dầu bôi trơn.
Để có thể dùng được các kết quả (5-70), (5-71),(5-72) cho trường hợp trục và ổ
trục đặt lệch tâm, phải nhân thêm với hệ số chỉnh β.
β = 2 ( )1+2C
2
( )2+C2 1–C2
(5-73)
Trong đó : C = e
δ
.
TRƯỜNG ĐẠI HỌC LẠC HỒNG KHOA KỸ THUẬT CÔNG TRÌNH
Giáo trình môn: Cơ Lưu Chất GVC.MSc. Đặng Quý
BÀI TẬP
1. Xàc định lưư lượng nước chảy ra ngoài. Vẽ đường năng và đường đo áp.Biết:
H = 1m, đường kính d1 = 75mm, d1 = 100mm, d3 = 50mm, ống ngắn nên bỏ qua tổn
thất dọc đường, nước chảy rối.
2. Biết đường kính d1 = 60mm, d2 = 120mm, lưu lượng Q = 55m3/h. Áp kế chứa
dung dịch có khối lượng riêng = 13,6.103kg/m.
Nước trong ống chảy rối.Bỏ qua tổn thất dọc đường. Xác định độ chêch cột lưu
lượng h ở áp kế.
3. Xác định áp suất chân không và áp suất tuyệt đối tại mặt cắt vào bơm.Cho
chiều cao hút của bơm Z h = 3m, ống hút có d = 100mm ; l = 10m, hệ số ma sát của
ống λ = 0,025; hệ thống tổn thất cục bộ tại ống rác ξ r= 8, tại chổ uốn ξ u = 0,14 ;
Q = 20 l/s .Nước chảy rối.
4. Xác định độ đặt bơm Zh , biết độ cao chân không tại mặt cắt vào bơm
h ck = 4,9m cột nước ; ống hút có d = 150mm ; l = 12m ; hệ số ma sát của ống
λ = 0,03 ; hệ số tổn thất cục bộ tại luới chắn rác ξ r = 6,3 ; tại chổ uốn ξ u =0,2 ; lưu
lượng qua bơm Q = 20 l/s. Nước chảy rối ( hình ở bài 3 ).
Các file đính kèm theo tài liệu này:
- Chuong_5_2.pdf