Mặt khác áp dụng định luật K.II ΣVkín= 0 cho vòng 1 ta có:
-VBB1+ RbIBQ1+ VBE1+ VE1= 0 (3)
⇒VE= VBB1– RbIBQ1– VBE1
= 1 – 104.1,15.10-5– 0,7 =0,185V
Thay vào (2) ta được:
VCE1= VCE2= 6 – 103.1,15. 10-3– 0,185 = 4,665V ≈4,67V
Ta có VE1= VCE3+ RE3.IEQ3- VEE (4)
Suy ra VCE3= VEE+ VE1– RE3IEQ3
= 3 + 0,185 – 103.2,3.10-3
= 0,885V VRE6= VCC– RC2ICQ2– VBE4- VBE5- VBE6
= 6 – 103.1,15.10-3– 2,1 = 2,75V
41 trang |
Chia sẻ: thienmai908 | Lượt xem: 1465 | Lượt tải: 0
Bạn đang xem trước 20 trang nội dung tài liệu Bài tập mạch điện tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
10.5
50501000500
100.500
h.
R)h1(hR//R
R//R
i
i
.
i
i
i
i
4
1fe
2E2fe2ie2b1C
2b1C
1b
1C
1C
2b
1b
2b
−=−=
++
−=
+++
−==
(8)
( )
( ) 5,01010
10
hR//R
R//R
i
i
33
3
1ie1bi
1bi
i
1b
=
+
=
+
= (9)
Thay (7), (8), (9) vaøo (2) ta ñöôïc:
iC2
hie1
1K
Ri
100K ii
hie2 1K
100ib1
RC1
1K
Rb2
1K hfe2RE2
5050
ib2 ib1 iC1
Rb1
1K Vo2
100ib2
hie3 1K
RC2
1K hfe3RE3
5050
ib3
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 30
( ) ( )
mA
V27,195,0.63,7.5050
i
V
i
01
≈−−=
Zi = Ri//Rb1//hie1 ≈ 500Ω
[ ] Ω≈++=
++= 5,471093010//50
h
R
h
Rh//RZ
3fe
2C
3fe
3ib3Eo
II. Transistor maéc vi sai vaø Darlingtôn
1) Baøi 6-23: E.C – E.C.
a- Cheá ñoä DC
V25,29.
10.310
10V.
RR
R
VV 33
3
CC
2111
11
2BB1BB =
+
=
+
==
mA55,1
42,710
7,025,2
h
R
R2
7,0V
II 3
fe
b
E
1BB
2EQ1EQ =
+
−
=
+
−
==
IE = 2IE1 = 3,1mA
VCEQ1 = VCC – 2RE.ICQ1 = 9 – 2.500.1,55.10-3 = 7,45V
VCEQ2 = VCC – 2RE.ICQ1 – RC2.ICQ2
= 9 – 103.1,55.10-3 – 2,5.103.1,55.10-3 = 3,575V
RE3
50Ω
Zo
hib3 10 R/hfe3 930
Rc2
hfe3
=10
+VCC =9V
ii
R21
3K
iL
ib3
R11
K
RE1
500
T1
T2
RC2
2,5K
R22
3K
R12
1K
T3
T4
RC4=RL
60
RE4
60
hfe=100
iC4 hie1
hfe2ib2
100ib2
RL
(1+hfe)RE1
(1+hfe)ib4 ii
hie3
RC2
2,5K
Rb2
750
h2feRE4
ib1 ib2 hfe3hie4
Rb1
750
hie2
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 31
V725,34,1875,39VVI.RVV 4BE3BE2CQ2CCCR 4E =−−=−−−=
mA62
60
725,3
R
V
II
4E
R
4EQ4CQ
4E
≈===
mA62,0
10
10.62
h
I
III 2
3
fe
4CQ
4BQ3EQ3CQ ≈=≈==
−
VCEQ4 = VCC – ICQ4(RC4 + RE4) = 9 – 62.10-3.120 = 9 – 7,44 = 1,56V
VCEQ3 = VCEQ4 – VBE4 = 1,56 – 0,7 = 0,86V
Ω===
−
−−
2258
10.55,1
10.25.100.4,1
I
10.25.h4,1h 3
3
1EQ
3
1fe1ie
Ω===
−
−−
5645
10.62,0
10.25.100.4,1
I
10.25.h4,1h 3
3
1EQ
3
3fe3ie
Ω===
−
−−
45,56
10.62
10.25.100.4,1
I
10.25.h4,1h 3
3
1EQ
3
4fe4ie
b- Cheá ñoä AC
( ) 50500101.500h1RR fe1E'E ==+=
( )[ ]( ) [ ] Ω=+=+++= K76,617101.606045,56h1Rh1hR 3fe4E4fe4ie' 4E
i
1b
1b
2c
2c
3b
3b
L
i
L
i i
i
.
i
i
.
i
i
.
i
i
i
i
A == (1)
( )( ) 10201101.101h1h1
i
i
4fe3fe
3b
L
==++= (2)
( )
3
33
3
'
4E4iefe3ie2C
2C
2c
3b
10,4
605,631
5,2
10.76,6175700564510.5,2
10.5,2
Rhh1hR
R
i
i
−≈
−
=
+++
−
=
++++
−
=
(3)
( ) 1001.h
i
i
i
i
i
i
2fe
1b
2b
2b
2c
1b
2c
−=−== (4)
(Vì R’E raát lôùn neân coi ib2 ≈ ib1)
3''
E1ieb
b
i
1b 10.4,128
28322258750
750
RhR
R
i
i
−
=
++
=
++
= (5)
iC2 hie1 2258
100ib2
RC
60Ω
R’E
50,5K
Zo
(1+hfe)2ib3
10201ib3
ii
hie3
5645
RC2
2,5K
Rb
750
R’E4
618K
ib1 ib2
hie4(1+hfe)
5700
Rb1
750
hie2 2258
ib3 iL
Zo’
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 32
vôùi [ ] Ω≈=+= 28323008//5050Rh//RR b2ie'E''E
Thay (2), (3), (4), (5) vaøo (1) ta coù:
Ai = 10201.(-4.10-3).(-100).128,4.10-3 = 522,3 (laàn)
Zi = Rb1//(hie1 +R’’E) ≈ 750//(2258 + 2832) = 654Ω
Zo = ∞ ⇒ Z’o = Zo//RC = RC = 60Ω
2) Baøi 6-24: E.C – C.C
a- Cheá ñoä DC
AÙp duïng ñònh luaät K.II ΣVkín = 0 cho voøng 2 ta coù:
VBE3 + IEQ3RE3 – VEE = 0 (1)
mA3,2
10
7,03
R
VV
I 3
3E
3BEEE
3EQ =
−
=
−
=
mA15,1
2
I
II 3EQ2EQ1EQ ===
VCE1 = VCE2 = VCC – RC1ICQ1 – VE1 (2)
Maët khaùc aùp duïng ñònh luaät K.II ΣVkín = 0 cho voøng 1 ta coù:
-VBB1 + RbIBQ1 + VBE1 + VE1 = 0 (3)
⇒ VE = VBB1 – RbIBQ1 – VBE1 = 1 – 104.1,15.10-5 – 0,7 =0,185V
Thay vaøo (2) ta ñöôïc:
VCE1 = VCE2 = 6 – 103.1,15. 10-3 – 0,185 = 4,665V ≈ 4,67V
Ta coù VE1 = VCE3 + RE3.IEQ3 - VEE (4)
Suy ra VCE3 = VEE + VE1 – RE3IEQ3
= 3 + 0,185 – 103.2,3.10-3 = 0,885V
VRE6 = VCC – RC2ICQ2 – VBE4 - VBE5 - VBE6
= 6 – 103.1,15.10-3 – 2,1 = 2,75V
mA275
10
75,2
R
V
I
6E
6RE
6EQ ===
VCE6 = VCC – VRE6 = 6 – 2,75 = 3,25V
VCE5 = VCE6 – VBE6 = 3,25 – 0,7 = 2,55V
VL
Zo Zi
ii
-3V
Rb1
10K
RC1
1K
Rb2
10K
RE
1K
VBB2
1V
T4
T5
RC2
1K
VBB1
1V
T3
RE6
10
T6
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 33
VCE4 = VCE5 – VBE5 = 2,55 – 0,7 = 1,85V
Ω===
−
−
−
−
3043
10.15,1
10.25.100.4,1
10.15,1
10.25.h4,1h 3
3
3
3
1fe1ie
mA75,2
h
I
I
6fe
6EQ
5EQ == ; A10.75,2h
I
I 5
5fe
5EQ
4EQ
−
==
Ω===
−
−−
72,12
10.275
10.25.100.4,1
I
10.25.h4,1h 3
3
6EQ
3
6fe6ie
hie5 = 1272Ω; hie4 = 127.200Ω
b- Cheá ñoä AC
( ) Ω≈≈+= 766E3fe6E' 6E 1010.Rh1RR
i
2b
2b
4b
4b
L
i
L
T i
i
.
i
i
.
i
V
i
V
A == (1)
Ω≈= 7' 6E
4b
L 10R
i
V
(2)
4
4
2
733
23
'
6E4ie2C
2fe2C
2b
2C
2C
4b
2b
4b
10.3,96
106,3811
10
1010.6,38110
10.10
Rh3R
h.R
i
i
.
i
i
i
i
−
−=
++
−=
++
−=
++
−==
(3)
485,0
1010.086,610
10
Rh2R
R
i
i
i
i
434
4
2b1ie1b
1b
i
1b
i
2b
−=
−+
−=
++
−=−=
(4)
Thay (2), (3), (4) vaøo (1) ta coù
AT = 107.(-96,3).10-4.(-0,485) = 46728V/A = 46,7V/mA
Zi = Rb1//[2hie1 + Rb2] ≈ 6,15KΩ
( ) Ω≈=
+= 37,0382,0//10
h
h3
h
R
//RZ 3
fe
4ie
3
fe
2C
6Eo
iC2 hie1 3043
VL
hfe2ib2
100ib2
Zo Zi
ii
hie4
127,2K
RC2
1K
Rb2
10K
R’E6
ib1
Rb1
10K
hie2 3043
ib4
ib2
hie5.hfe4
127,2K
hie5.hfe4.hfe5
127,2K
Zo
RE6
3hie4
h3fe
=0,381 Rc2
h3fe
≈10
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 34
Chöông VII: MAÏCH KHUEÁCH ÑAÏI HOÀI TIEÁP.
I. Hoài tieáp aùp, sai leäch doøng.
1) Baøi 7-4
=
Ω=
40h
K1h
GT
fe
ie ;
==
=
?
i
i
A
?T
KL
i
L
i
Ñaây laø daïng hoài tieáp aùp, sai leäch doøng.
a- Tính ñoä lôïi doøng T: cho ii = 0
'
1
1b
1b
2b
2b
1
i
'
1
1
V
i
.
i
i
.
i
V
0iV
V
T =
=
= (1)
( ) 32fe22E
2b
1 10.41h1R
i
V
=+= (2)
( ) ( )
941,0
85
80
10.4110.411010.2
40.10.2
h1Rh1RhR
h.R
i
i
.
i
i
i
i
3333
3
2fe22E2fe21E2ie1C
1fe1C
1b
1C
1C
2b
1b
2b
−=−=
+++
−=
+++++
−==
(3)
634
1ief1ief
'
1
'
1
'
1
1b 10.91
1010
1
hR
1
hR
V
.
V
1
V
i
−
=
+
=
+
=
+
= (4)
V1
ii
RE22
1K
Rf 10K
RC1
2K
RC2
2K
iL
RL
100
+VCC
RE21
1K
T1
VL
iC2
hie1
hfe1ib1
40ib1
RE21(hfe2+1)
41K
Zo Zi
ii
RC1
2K
RC2
2K
ib1 ic1
40ib2
Rf
V1
hie2 1K
ib2
V’1
+
-
RE22(hfe2+1)
41K
RL
100
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 35
Thay (2), (3), (4) vaøo (1) ta coù:
T = 41.103.(-0,941).91.10-6 = -3,51
b- Tính
i
L
i i
iA = cho V’1 = 0
i
1b
1b
2b
2b
L
i
L
i i
i
.
i
i
.
i
i
i
i
A == (1)
6,3940.
1010.2
10.2h.
RR
R
i
i
.
i
i
i
i
3
3
2fe
L2C
2C
2b
2C
2C
L
2b
L
−=
+
−=
+
−== (2)
941,0
i
i
1b
2b
−= (nhö (3) ôû phaàn treân) (3)
234
4
1ief
f
i
1b 10.91
1010
10
hR
R
i
i
−
=
+
=
+
= (4)
Thay (2), (3), (4) vaøo (1) ta coù:
Ai = (-39,6).(-0,941).91.10-2 = 33,9 ≈ 34
c- Tính Aif, Zif, Zof.
54,7
51,31
34
T1
A
A iif =+
=
−
=
Zi = Rf//hie1 = 104//103 ≈ 910Ω
Ω=
+
=
−
= 202
51,31
910
T1
Z
Z iif
Zo = RC2 = 2KΩ
Ω=
+
=
−
= 443
51,31
10.2
T1
Z
Z
3
o
of
2) Baøi 7-11
∞→
Ω=
=
C
10h
100h
GT ib
fe
;
=
==
?T
Z;Z
?
i
i
A
KL oi
i
L
i
ii
Rf = Rb =10K
RC 2K
C
iL
RL
+VCC
RE
100
C
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 36
hie = hib.hfe = 10.100 = 1KΩ
a- Ñoä lôïi voøng T: cho ii = 0
'
L
b
b
L
i
'
L
L
V
i
.
i
V
0iV
V
T =
=
= (1)
433
233
fe
LC
C
L
b
C
C
L
b
L 10.5
1010
10.10.10h.
RR
R
.R
i
i
.
i
V
i
V
−=
+
−=
+
−== (2)
634
iefief
'
L
'
L
'
L
b 10.91
1010
1
hR
1
hR
V
.
V
1
V
i
−
=
+
=
+
=
+
= (3)
Thay (2), (3) vaøo (1) ta coù:
T =(-5.104).91.10-6 = -4,55
b- Tính Ai, Zi, Zo.
i
b
b
L
'
Li
L
i i
i
.
i
i
0Vi
i
A =
=
= (1)
50100.
1010
10h.
RR
R
i
i
.
i
i
i
i
3
3
fe
LC
C
b
C
C
L
b
L
−=
+
−=
+
−== (2)
234
4
ief
f
i
b 10.91
1010
10
hR
R
i
i
−
=
+
=
+
= (3)
Thay (2), (3) vaøo (1) ta coù:
Ai = (-50).91.10-2 = -45,45
Zi = Rf//hie = 104//103 = 910Ω
Zo = RC = 103Ω = 1KΩ
c- Tính Aif, Zif, Zof.
2,8
55,41
50
T1
A
A iif −=+
−=
−
=
Ω=
+
=
−
= 164
55,41
910
T1
Z
Z iif
Ω=
+
=
−
= 180
55,41
10
T1
Z
Z
4
o
of
hie1
iL
VL hfeib
100ib
Zo
ii
RC
1K
ib ic
Rf Rf
10K
V’L
+
-
RL
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 37
II. Hoài tieáp aùp, sai leäch aùp:
1) Baøi 7-10
∞→
Ω=
=
C
50h
50h
GT ib
fe
;
=
==
?T
Z;Z
?
i
i
A
KL oi
i
L
i
a- Tính ñoä lôïi voøng T (cho ii = 0)
'
L
1b
1b
2b
2b
L
i
'
L
L
V
i
.
i
i
.
i
V
0iV
V
T =
=
= (1)
33
34
34
2fe
2Cf
2Cf
2b
2C
2C
L
2b
L
10.5,8350.10.67,150.
10.210
10.2.10
h.
RR
R.R
i
i
.
i
V
i
V
−=−=
+
−=
+
−==
(2)
( )
46,12
10.5,210.83,0
50.10.83,0
h
hR//R
R//R
i
i
.
i
i
i
i
33
3
1fe
2ie2b1C
2b1C
1b
1C
1C
2b
1b
2b
−=
+
−=
+
−==
(3)
6
3533
3
1fef1E1fe1ie1b
1fe1E
'
L
1b
10.2,1
10.210.5
1.
10.510.5,2890
10.5
'Rh.R
1.
R.hhR
h.R
V
i
−
−=
+++
−
=
+++
−
=
(4)
VL
ii
Rf =10K
C
+VCC
R21
8K
C
R11
1K
RC1
1K
RE1
100
R22
10K
R12
10K
RC2
2K
RE2
1K
iC1
hfe1ib1
50ib1
hie1 2,5K
hie2
2,5K
RC2
2K
Zo
ii
RC1
1K
Rb2
5K
Rf
10K
ib2 ib1 iC2
hfe2ib2
50ib2
Rf.hfe1
5.105
RE1hfe1
5K
V
’
L
+
-
Rb1
890
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 38
Thay (2), (3), (4) vaøo (1) ta coù:
T = (-83,5.103).(-12,46).(1,2.10-6)= -1,25
b- Tính AT, Zi, Zo.
i
1b
1b
2b
2b
L
i
L
T i
i
.
i
i
.
i
V
i
V
A == (1)
2b
L
i
i
vaø
1b
2b
i
i
tính nhö treân theo coâng thöùc (2), (3)
( ) 107,010.95,410.5,2890
890
hRRhR
R
i
i
33
1fef1E1ie1b
1b
i
1b
=
++
=
+++
= (4)
Thay (2), (3), (4) vaøo (1) ta coù:
Ai = (-83,5.103).(-12,46).(0,107) = 111.103V/A = 111V/mA
Zi = Rb1//[hie1 + (RE11//Rf)(1 + hfe)] = 890 //[2500 + 4950] = 795Ω
Zo = Rf = 10KΩ
c- Tính AVf, Zof, Zif.
mA
V49
A
V10.49
25,11
10.111
T1
A
A 3
3
T
Tf ==+
=
−
=
( ) Ω=+=−= 1788)25,11(795T1ZZ iif
Ω=
+
=
−
= 4444
25,11
10
T1
Z
Z
4
o
of
2) Baøi 7-12
∞→
Ω=
=
C
50h
20h
GT ib
fe
;
=
=
?T
Z;Z
?A
KL oi
V
VL
Vi
+
-
ri 1K
Rf =1K
C
+VCC
R21
10K
C
R11
1K
RC1
500
RE12
82
R22
10K
R12
1K
RC2
500
RE22
82
C
RE11
22
C
RE21
22
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 39
a- Tính ñoä lôïi voøng T (cho Vi = 0)
'
L
1b
1b
2b
2b
L
i
'
L
L
V
i
.
i
i
.
i
V
0iV
V
T =
=
= (1)
( ) 666720.500//10h.
RR
R.R
i
i
.
i
V
i
V 3
2fe
2Cf
2Cf
2b
2C
2C
L
2b
L
−=−=
+
−== (2)
( ) ( )
52,3
1835
6460
4621050323
20.323
h
h1RhR//R
R//R
i
i
.
i
i
i
i
1fe
2fe21E2ie2b1C
2b1C
1b
1C
1C
2b
1b
2b
−=−=
++
−=
+++
−==
(3)
( )
( )( )
( )( ) ( )
6
3
3
1bi1ie1fef11E
1fef11E
1fef
,
L
,
L
'
L
1b
10.88,10
4,41546
10.452
4,4761050452
452.
10.21
1
R//rhh1R//R
h1R//R
.
h1R
V
.
V
1
V
i
−
−
−=−=
++
−=
+++
+
+
−=
(4)
Thay (2), (3), (4) vaøo (1) ta coù:
T = (-6667).(-3,52).(-10,88.10-6)= -0,255
b- Tính AV, Zi, Zo.
i
1b
1b
2b
2b
L
i
L
V V
i
.
i
i
.
i
V
V
V
A == (1)
2b
L
i
V vaø
1b
2b
i
i
tính nhö treân theo coâng thöùc (2), (3)
( ) ( )( )
5
3
3
1fef11E1ie1bi
1bi
i
i
ii
1b
10.24
4,1978
10.4,476
45210504,476
4,476.
10
1
h1R//RhR//r
R//r
.
r
V
.
V
1
V
i
−
−
==
++
=
+++
=
(4)
hfe1ib1
20ib1
Rf(hfe1+1)
21K hie2 1050
Vi
+
-
Zo Zi
Rb1
910
RCb2
910
ib1 iC2
RE11(1+hfe1)
462
iC1
V’L
+
-
ri 1K
RC1
500
RC2 500 ib2 ii hie1 1050
RE21(1+hfe2)=462Ω
20ib2
Rf 1050
Rf(hfe1+1)
21K
Rb1
910
ib1
RE11(1+hfe1)
462
ri
1K
hie1 1050
V’L
Rf(1+hfe1)
Khoa Ñieän - Ñieän töû Vieãn thoâng Maïch Ñieän Töû I
Moät soá baøi taäp maãu 40
Thay (2), (3), (4) vaøo (1) ta coù:
AV = (-6667)(-3,52).24.10-5 = 5,63
Zi = Rb//[hie1 + (RE11//Rf)(1 + hfe1)] = 103 //1502 ≈ 600Ω
Zo = Rf = 1000Ω
c- Tính AVf, Zif, Zof.
486,4
255,01
63,5
T1
A
A VVf =+
=
−
=
( ) Ω=+=−= 753)255,01(600T1ZZ iif
Ω=
+
=
−
= 797
255,01
1000
T1
Z
Z oof
Các file đính kèm theo tài liệu này:
- TaiLieuTongHop.Com---Bai tap mach dien tu.pdf