Bài giảng toán học -Tiết 59: ĐA THỨC MỘT BIẾN

A. MỤC TIÊU:

- Giúp học sinh biết kí hiệu đa thức một biến và biết sắp xếp đa thức theo luỹ thừa giảm

hoặc tăng của biến.

- Biết tìm bậc, các hệ số, hệ số cao nhất, hệ số tự do của đa thức một biến.

- Biết kí hiệu giá trị của đa thức tại một giá trị cụ thể của biến

B. CHUẨN BỊ:

Giáo viên: Phấn mầu, bảng phụ, thước thẳng.

Học sinh: Giấy trong, bút dạ xanh, phiếu học tập.

pdf6 trang | Chia sẻ: lelinhqn | Lượt xem: 1131 | Lượt tải: 0download
Nội dung tài liệu Bài giảng toán học -Tiết 59: ĐA THỨC MỘT BIẾN, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 59: ĐA THỨC MỘT BIẾN A. MỤC TIÊU: - Giúp học sinh biết kí hiệu đa thức một biến và biết sắp xếp đa thức theo luỹ thừa giảm hoặc tăng của biến. - Biết tìm bậc, các hệ số, hệ số cao nhất, hệ số tự do của đa thức một biến. - Biết kí hiệu giá trị của đa thức tại một giá trị cụ thể của biến B. CHUẨN BỊ: Giáo viên: Phấn mầu, bảng phụ, thước thẳng. Học sinh: Giấy trong, bút dạ xanh, phiếu học tập. C. TIẾN TRÌNH BÀI DẠY: 1. Kiểm tra bài cũ: (2’-3’) - Thế nào đa thức? Biểu thức sau có là đa thức không? - 2x5 + 7x3 + 4x2 – 5x + 1 - Chỉ rõ các đơn thức có trong 2 đa thức trên là đơn thức của biến nào? - K/đ: rõ ràng mỗi đa thức trên là tổng của các đơn thức của cùng biến x  được gọi là đa thức một biến x, kí hiệu là f(x) 2. Dạy học bài mới: HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ GHI BẢNG HOẠT ĐỘNG 1: ĐA THỨC MỘT BIẾN (8’ – 10’)  Cho ví d v a thc mt bin.  Phát biu khái nim a thc mt bin .  Trả lời miệng  Trả lời miệng I. a thc mt bin Ví dụ: A = 7y2 – 3y + 2 1 là đa thức của biến y B = 2x5–3x+7x3+4x5 + 2 1 Khái niệm: SGK / 41 Lưu ý:  Mỗi số được coi là một đa thức một biến  Để chỉ A là đa thức của biến y, người ta viết A(y)  Giá trị của đa thức f(x) tại x = a được kí hiệu là f(a)  Yêu cu hc sinh làm ?1  Mt hc sinh lên bng, các hc sinh ?1 Thay y = 5 vào đa  Yêu cu hc sinh làm ?2 khác làm vào v  Mt hc sinh lên bng, các hc sinh khác làm vào v thức A(y) ta có: A(5) = 7.52 –3.5+ 2 1 = 160 2 1 Thay x = - 2 vào đa thức B ta có: B(-2) = 6.(-2)5+ 7 (-2)3 – 3 (-2) + 2 1 = 89 2 1 ?2 Bậc của đa thức A(y) là 2 Bậc của đa thức B(x) là 5 * Bậc của đa thức (khác đa thức 0, đã thu gọn) là số mũ lớn nhất của biến trong đa thức đó. HOẠT ĐỘNG 2: SẮP XẾP MỘT ĐA THỨC (8’ – 10’)  Sp xp các hng t theo lu tha gim dn ca bin?  Sp xp các hng t theo lu tha tng dn ca bin  Rút ra chú ý.  Mt hc sinh lên bng, các hc sinh khác làm vào v .  Mt hc sinh lên bng, các hc sinh khác làm vào v.  Tr li ming II. Sắp xếp một đa thức Ví dụ: C(x)=5x+3x2–7x5 + x6 – 2 Sắp xếp các hạng tử theo luỹ thừa giảm dần của biến: C(x)=x6–7x5+3x2 + 5x – 2 Sắp xếp các hạng tử theo luỹ thừa tăng dần của biến: C(x)=-2+5x+3x2–7x5+ x6 Chú ý: Để sắp xếp các hạng tử trước hết phải thu gọn ?3 ?4 Q(x) = 5x2 – 2x +1 R (x) = - x2 + 2x – 10 Nhận xét:  Mọi đa thức bậc 2 của biến x, xau khi sắp xếp các hạng tử của chúng theo luỹ thừa giảm dần của biến, đều có dạng: ax2 + bx + c  Trong đó a,b ,c là các số cho trước và a  0 Chú ý: (SGK/42) HOẠT ĐỘNG 3: HỆ SỐ (8’ – 10’) III. Hệ số: P(x) = 6x5 + 7x3 – 3x + 2 Phần biến x5 x3 x Phần hệ số 6 7 -3 2  Gii thiu: h s cao nht, h s t do.  Yêu cu hc sinh tìm h s cao nht và h s t do ví d trên.  Gii thiu chú ý: a thc f(x) có th vit y t lu tha bc cao nht n lu tha 0 là:  Mt hc sinh lên bng, các hc sinh khác làm vào v  Hệ số cao nhất: 6  Hệ số tự do: 2 Chú ý: P(x) = 6x5 + 0 x4 + 7x3 + 0 x2 – 3x + 2 Hệ số các luỹ thừa bậc 4, bậc 2 của P(x) bằng 0 3. Luyện tập và củng cố bài học: (8’- 10’) - Bài 39 (Tr 43 - SGK) 4. Hướng dẫn học sinh học ở nhà: (1’) - Bài tập 40 đến 43 (SGK - Tr 43) Ngày soạn:18/1/2007 Ngày giảng: 25/1/2007 Tiết 60: CỘNG VÀ TRỪ ĐA THỨC MỘT BIẾN A. MỤC TIÊU: - Học sinh biết cộng trừ đa thức một biến bằng nhiều cách khác nhau. - Hiểu được thực chất f(x) – g(x) = f(x) + (-g(x)) - Rèn kĩ năng sắp xếp đa thức theo luỹ thừa giảm dần hoặc tăng dần của biến và cộng trừ các đa thức đồng dạng. B. CHUẨN BỊ: Giáo viên: Phấn màu, bảng phụ, thước thẳng. Học sinh: Bút dạ xanh, giấy trong, phiếu học tập. C. TIẾN TRÌNH BÀI DẠY: 1. Kiểm tra bài cũ: (5’-7’) - Hai đa thức sau có phải là đa thức một biến không? Có thể kí hiệu hai đa thức này ntn? Xác định bậc, hệ số, hệ số tự do các đa thức đó. - Nhắc lại quy tắc cộng trừ các đa thức? áp dụng tính tổng hiệu của hai đa thức 2. Dạy học bài mới: HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ GHI BẢNG HOẠT ĐỘNG 1: CỘNG HAI ĐA THỨC MỘT BIẾN (3’ – 5’)  Hng dn hc sinh cng hai a thc A(x) và B(x) bng cách t phép tính:  Sp xp hai a thc cùng theo lu tha gim dn hoc tng dn ca bin  t phép tính nh cng các s (chú ý các n thc ng dng trong cùng mt ct )  Mt hc sinh lên bng, các hc sinh khác làm vào v  Mt hc sinh lên bng, các hc sinh khác làm vào v 1. Cng hai a thc mt bin Ví dụ: A(x)=5x4+6x3-x2+7x– 5 B(x) = 3x3 + 2x2 + 2 Cách 1 A(x) + B(x) = (5x4 + 6x3 - x2 + 7x– 5) + (3x3 + 2x2 + 2) = 5x4 + 6x3 - x2 + 7x – 5 + 3x3 + 2x2 + 2 = 5x4 + (6x3 + 3x3) + (-x2 + 2x2) + 7x + (-5 + 2 ) = 5x4 + 9x3 +x2 +7x – 3 Cách 2 A(x)=5x4+6x3- x2+7x–5 +B(x) = 3x3+2x2 +2 A(x)+B(x)=5x4+9x3+x2+7x-3 HOẠT ĐỘNG 2: TRỪ HAI ĐA THỨC MỘT BIẾN (30’ – 32’)  Hng dn hc sinh tr hai a thc A(x) và B(x) bng cách t phép tính:  Sp xp hai a thc cùng theo lu tha gim dn hoc tng dn ca bin  t phép tính nh tr các s (chú ý các n thc ng dng trong cùng mt ct )  Thc cht A(x) - B(x) = A(x) +(-B(x)) Có th thc hin phép tính bng cách công vi a thc i cu a thc B(x), vit a thc i cu a thc B(x) ntn?  Gii thiu chú ý  Yêu cu hc sinh làm ?1  Mt hc sinh lên bng, các hc sinh khác làm vào v  Tr li: các hng t ca a thc B(x) vi du ngc li ta c a thc – B (x)  Mt hc sinh lên bng, các hc sinh khác làm vào v 2. Tr hai a thc mt bin Ví dụ: Tính A(x) – B(x) với A(x) và B(x) đã cho ở trên. Cách 1: học sinh tự giải Cách 2: Đặt phép tính A(x)=5x4+6x3- x2+7x–5 -B(x) = 3x3+2x2 +2 A(x)-B(x)=5x4+3x3-3x2+7x- 7 Chú ý: Cách 1: Thực hiện cộng trừ đa thức đã học ở Đ6 Cách 2: Sắp xếp các hạng tử của hai đa thức cùng theo luỹ htừa giảm hoặc tăng của biến, rồi đặt phép tính theo cột dọc tương tự như cộng trừ các số áp dụng: ?1 M(x)=x4+5x3-x2+x–0,5 +N(x)=3x4 -5x2-x – 2 M(x)+N(x)=4x4+5x3–6x2–2,5 M(x)-N(x) =-2x4+5x3+4x2+2x+1,5 HOẠT ĐỘNG 3: LUYỆN TẬP (30’ – 32’) Bài 45 (Tr 45 - SGK) Yêu cầu học sinh làm bài Theo dõi, nhận xét, sửa chữa, cho điểm.  Mt hc sinh lên bng, các hc sinh khác làm vào v 3. Luyện tập Bài 45 (Tr 45 - SGK) Q(x) = x5 – 2x2 + 1 – P (x) Q(x) = x5 – 2x2 + 1 - x4 + 3x2 + x - 2 1 Q(x) = x5 – x4 + x2 +x + 2 1 P(x) – R (x) = x3 R(x) = P(x) – x3 = x4 - 3x2 - x + 2 1 - x3 3. Luyện tập và củng cố bài học: (Lồng vào phần luyện tập) - 4. Hướng dẫn học sinh học ở nhà: (1’) - Bài tập 44 đến 46,47,48 (SGK - Tr 46)

Các file đính kèm theo tài liệu này:

  • pdfdai_tiet_59_den_60_4036.pdf
Tài liệu liên quan