Bài giảng toán học -Tiết 25 + 26: luyện tập bất phương trình quy về bậc hai

A. MỤC TIÊU:

-Nắm vững cách giải và giải thành thạo các bpt quy về bậc 2.

-Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối.

-Bất phương trình chứa ẩn trong căn bậc hai.

B. CHUẨN BỊ:

-Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk

-Học sinh: Học và làm bài ở nhà.

pdf9 trang | Chia sẻ: lelinhqn | Lượt xem: 1494 | Lượt tải: 0download
Nội dung tài liệu Bài giảng toán học -Tiết 25 + 26: luyện tập bất phương trình quy về bậc hai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TIẾT 25 + 26: LUYỆN TẬP BẤT PHƯƠNG TRÌNH QUY VỀ BẬC HAI A. MỤC TIÊU: - Nắm vững cách giải và giải thành thạo các bpt quy về bậc 2. - Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối. - Bất phương trình chứa ẩn trong căn bậc hai. B. CHUẨN BỊ: - Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk - Học sinh: Học và làm bài ở nhà. TIẾT 25: C. TIẾN TRÌNH BÀI GIẢNG: I. KIỂM TRA BÀI CŨ (15’) - Hãy nêu cách khử dấu giá trị tuyệt đối trong khi giải bpt. + Dựa vào đ/n giá trị tuyệt đối. + Dựa vào điều sau đây:  A -  ( < 0) A <   A >   A >  ( > 0) A < -  - Áp dụng : Giải các bpt. 1. 187 13 2 2    xx x (1) (1)  1 87 13 2 2    xx x (1a) 1 87 13 2 2    xx x (1b) 2. 2x2 – 9x + 15 20 (2)  2x2 – 9x + 15  20 2x2 – 9x + 15  - 20 => S (-  ; - 2 1 ]  [5 ; + ) Giải (1a) cho S1a = (-; -1)  [1; 2 5 ]  [ 8; +) Giải (1b) cho S1b = (- ; - 3)  (-1; 8) Tập nghiệm của (1) là S1 = S1a  S1b = (-; -3)  [1; 2 5 ] II. BÀI GIẢNG MỚI: HOẠT ĐỘNG 1 (10’): Giải các phương trình: a)x2 – 5x + 4 = x2 + 6x + 5 (1) b) x - 1 = 2x – 1 (2) Hướng dẫn giải: Ta sử dụng tương đương sau: f(x)  0 (II) f(x) = g(x) f(x) < 0 -f(x) = g(x) Nghiệm của phương trình đã cho là S = S I  S II Học sinh làm theo mẫu trên HOẠT ĐỘNG 2 (5’) Giải bpt : -x2 + x - 1  2x + 5 (1) Vì -x2 + x – 1 < 0 với  x  R (vì a = - 1 < 0,  < 0) => (1)  x2 - x + 1  2x + 5  x2 – 3x – 4  0 => S = [ - 1 ; 4] HOẠT ĐỘNG 3 (15’). Giải bpt x2 - x  x2 - 1 (1) Hướng dẫn: áp dụng tương đương sau: A  B  A2  B2  A2 - B2  0 (I) f(x) = g(x)   (A + B)(A – B )  0 Học sinh tự làm theo hướng dẫn của giáo viên. => S = [ - 2 1 ; + ) III. CỦNG CỐ: Tìm a để phương trình: -2x2 + 10x - 8 = x2 – 5x + a có 4 nghiệm pb Giải:  f(x) = 2x2 - 10x + 8 - x2 + 5x = a x2 - 5x + 8 (P1) (x  1 hoặc x  4) -3x2 + 15x – 8 (P2) (1  x  4) Nhìn vào đồ thị => để phương trình có 4 nghiệm phân biệt thì 4 < a < 4 43 IV. BÀI VỀ NHÀ: Làm bài 68 a, b trang 151 TIẾT 26: C. TIẾN TRÌNH BÀI GIẢNG: Ta có f(x) = => đồ thị I. KIỂM TRA BÀI CŨ (10’) Nhớ các tương đương sau:  g(x)  0 f(x) = g2(x)  f(x)  0 g(x) > 0 f(x) < g2(x)  f(x)  0 g(x)  0 g(x) < 0 f(x)  g2(x) S3 = SI  SII Áp dụng giải: 1) 2080562  xxx (1) 2) 31522  xxx (2) 3) 212  xx (3) II. GIẢNG BÀI MỚI: HOẠT ĐỘNG 1( 15’): )(xf = g(x)  )(xf < g(x)  )(xf > g(x)  (I) Hoặc (II) Hướng dẫn học sinh lập được hệ bpt tương đương với phương trình hoặc bất phương trình đã cho. Hoạt động của thầy Hoạt động của trò 1. Phương trình(1) tương đương với hệ bất phương trình nào ? Hãy giải hệ đó (1)  x + 20 x2 + 56x + 80 = (x + 20)2  x  - 20  x = 20 16x = 320 ĐS; Nghiệm của PTĐC là x = 20 2. Cũng hỏi tương tự trên (2)  x – 3 > 0 x2 – 2x – 15  0 x2 – 2x – 15 < (x – 3)2  x > 3 x  - 3 hoặc x  5 x < 6  5  x < 6 ĐS tập nghiệm của bpt đã cho là S = [5 ; 6) 3. (3) tương đương với các hệ bpt nào? (3)  (I) x2 – 1  0 x + 2 < 0 hoặc (II) x2 + 2  0 x2 – 1 = (x + 2)2 Giải từng hệ bpt đó Giải (I)  x  - 1 hoặc x  0 x < -2  x < -2 (II)  x  - 2  - 2  x < - 4 5 4x < - 5 Tập nghiệm của (3) là ? Tập nghiệm của bpt (3) là S3 = SI  SII = (-; -2)  [ -2; - 4 5 ] = (-;- 4 5 ) HOẠT ĐỘNG 2(15’). Tìm giá trị của m sao cho phương trình: x4 + (1 – 2m)x2 + m2 – 1 = 0 (1) a) Vô nghiệm b) Có 2 nghiệm phân biệt c) Có 4 nghiệm phân biệt Hoạt động của thầy Hoạt động của trò Đặt ẩn phụ đưa về phương trình quen thuộc Đặt y = x2, y  0 ta được phương trình y2 + (1 – 20)y + m2 – 1 = 0 (2) có  = (1 – 2m)2 – 4(m2 – 1) = 5 – 4m (1) Vô nghiệm khi nào ? a) (1) Vô nghiệm  (2) vô nghiệm (2) chỉ có 1 n0 âm   = 5 – 4m 4 5   0 5 – 4m  4 P > 0  m2 – 1 >0  m < - 4 S < 0 2m – 1 < 0 Vậy (1) VN khi và chỉ khi m < - 1 hoặc m > 4 5 (1) có 2 nghiệm phân biệt thì (2) phải có nghiệm ntn ? b) (1) có 2 nghiệm phân biệt (2) có 2 nghiệm trái dấu hoặc (2) có một nghiệm kép dương  P < 0  - 1 < m< 1  = 0 m = 4 5 - a b 2 > 0 vậy m  (-1; 1)  { 4 5 } Để (1) có 4 nghiệm phân biệt thì (2) phải có nghiệm ntn ? c) (1) có 4 nghiệm phân biệt  (2) có 2 nghiệm dương phân biệt   > 0 P > 0  …  1 < m < 4 5 S > 0 III. CỦNG CỐ (5’) : Giải bpt: 6 )32)(2(  xx  x – 34x + 48 (1) Hướng dẫn: Đặt y = )32)(2(  xx = 64342  xx  0 IV. BÀI VỀ NHÀ: Làm bài 73 , 74 , 75 Sgk trang 154

Các file đính kèm theo tài liệu này:

  • pdftiet_25_3344.pdf
Tài liệu liên quan