Năm 1968, Frederich Miescher (Thụy Điển) phát hiện ra trong nhân tế bào bạch cầu một chất không phải là protein và gọi là nuclein. Về sau thấy chất này có tính acid nên gọi là acid nucleic. Acid nucleic có 2 loại là desoxyribonucleic(DNA) vàribonucleic(RNA).
Năm 1914, R. Feulgen (nhà hóa học người Đức) tìm ra phương pháp nhuộm màu đặc hiệu đối với DNA. Sau đó các nghiên cứu cho thấy DNA của nhân giới hạn trong NST. Nhiều sự kiện cho gián tiếp cho thấy DNA là chất di truyền. Mãi đến năm 1944 vai trò mang thông tin di truyền của DNA
mới được chứng minh và đến năm 1952 mới được công nhận.
30 trang |
Chia sẻ: zimbreakhd07 | Lượt xem: 2799 | Lượt tải: 1
Bạn đang xem trước 20 trang nội dung tài liệu Bài giảng Di truyền học - Chương 1: Bản chất của vật chất di truyền, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Bài giảng điện tử
Môn: Di truyền học (45 tiết)
Trương Thị Bích Phượng
Khoa Sinh học, Trường đại học Khoa học, Đại học Huế
Chương 1
Bản chất của vật chất di truyền
Mục tiêu của chương
Giới thiệu bản chất của vật chất di truyền là DNA, thành phần, cấu
trúc của phân tử DNA, dạng DNA khác nhau trong tế bào.
Số tiết: 6
Nội dung
I. DNA là vật chất di truyền
Năm 1968, Frederich Miescher (Thụy Điển) phát hiện ra trong nhân
tế bào bạch cầu một chất không phải là protein và gọi là nuclein. Về sau
thấy chất này có tính acid nên gọi là acid nucleic. Acid nucleic có 2 loại là
desoxyribonucleic (DNA) và ribonucleic (RNA).
Năm 1914, R. Feulgen (nhà hóa học người Đức) tìm ra phương pháp
nhuộm màu đặc hiệu đối với DNA. Sau đó các nghiên cứu cho thấy DNA
của nhân giới hạn trong NST. Nhiều sự kiện cho gián tiếp cho thấy DNA là
chất di truyền. Mãi đến năm 1944 vai trò mang thông tin di truyền của DNA
mới được chứng minh và đến năm 1952 mới được công nhận.
1. Các chứng minh gián tiếp
Nhiều số liệu cho thấy có mối quan hệ giữa DNA và chất di truyền
- DNA có trong tế bào của tất cả các vi sinh vật, thực vật, động vật
chỉ giới hạn ở trong nhân và là thành phần chủ yếu của nhiễm sắc thể. Đó là
một cấu trúc mang nhiều gen xếp theo đường thẳng.
1
- Tất cả các tế bào dinh dưỡng của bất kỳ một loại sinh vật nào đều
chứa một lượng DNA rất ổn định, không phụ thuộc vào sự phân hóa chức
năng hoặc trạng thái trao đổi chất. Ngược lại, số lượng RNA lại biến đổi tùy
theo trạng thái sinh lý của tế bào.
- Số lượng DNA tăng theo số lượng bội thể của tế bào. Ở tế bào sinh
dục đơn bội (n) số lượng DNA là 1, thì tế bào dinh dưỡng lưỡng bội (2n) có
số lượng DNA gấp đôi.
- Tia tử ngoại (UV) có hiệu quả gây đột biến cao nhất ở bước sóng
260nm. Đây chính là bước sóng DNA hấp thu tia tử ngoại nhiều nhất.
Tuy nhiên trong các số liệu trên, thành phần cấu tạo của NST ngoài
DNA còn có các protein. Do đó cần có các chứng minh trực tiếp mới khẳng
định vai trò vật chất di truyền của DNA.
2. Thí nghiệm biến nạp DNA (Transformation)
Hiện tượng biến nạp do Griffith phát hiện vào năm 1928 ở vi khuẩn
Diplococcus pneumoniae (gây sưng phổi ở động vật có vú). Vi khuẩn này
có hai dạng:
- Dạng S (gây bệnh): có vỏ bao tế bào bằng polysaccharid, ngăn cản
bạch cầu phá vỡ tế bào. Dạng này tạo khuẩn lạc láng trên môi trường agar.
- Dạng R (không gây bệnh) không có vỏ bao tế bào bằng
polysaccharid, tạo khuẩn lạc nhăn.
Thí nghiệm được tiến hành như sau:
a. Tiêm vi khuẩn dạng S sống gây bệnh cho chuột, sau một thời gian
nhiễm bệnh, chuột chết
b. Tiêm vi khuẩn dạng R sống không gây bệnh cho chuột, chuột
sống
c. Tiêm vi khuẩn dạng S bị đun chết cho chuột, chuột chết
d. Tiêm hỗn hợp vi khuẩn dạng S bị đun chết trộn với vi khuẩn R
sống cho chuột, chuột chết. Trong xác chuột chết có vi khuẩn S và R.
2
Hình 1.1 Thí nghiệm biến nạp ở chuột
Hiện tượng trên cho thấy vi khuẩn S không thể tự sống lại được sau
khi bị đun chết, nhưng các tế bào chết này đã truyền tính gây bệnh cho tế
bào R. Hiện tượng này gọi là biến nạp.
Đến 1944, ba nhà khoa học T. Avery, Mc Leod, Mc Carty đã tiến
hành thí nghiệm xác định rõ tác nhân gây biến nạp. Nếu tế bào S bị xử lý
bởi protease hoặc RNAase. thì hoạt tính biến nạp vẫn còn, cứng tỏ RNA và
protein không phải là tác nhân gây bệnh. Nhưng nếu tế bào chết S bị xử lý
bằng DNAase thì hoạt tính biến nạp không còn nữa, chứng tỏ DNA là nhân
tố biến nạp. Kết quả thí nghiệm được tóm tắc như sau:
DNA của S + tế bào R sống chuột chết (có S, R )
3
Kết luận: hiện tượng biến nạp là một chứng minh sinh hóa xác nhận
rằng DNA mang tín hiệu di truyền. Nhưng vai trò của DNA vẫn chưa
được công nhận vì cho rằng trong các thí nghiệm vẫn còn một ít protein.
Hình 1.2 Vật chất di truyền của phage là DNA
3. Sự xâm nhập của DNA virus vào vi khuẩn
Năm 1952, A. Hershey và M. Chase đã tiến hành thí nghiệm với
bacteriophage T2 xâm nhập vi khuẩn E.coli.
Phage T2 cấu tạo gồm vỏ protein bên ngoài và ruột DNA bên trong.
Thí nghiệm này nhằm xác định xem phage nhiễm vi khuẩn đã bơm chất nào
vào tế bào vi khuẩn: chỉ DNA, chỉ protein hay cả hai.
Vì DNA chứa nhiều phosphor, không có lưu huỳnh; còn protein
chứa lưu huỳnh nhưng không chứa phosphor nên có thể phân biệt giữa DNA
và protein nhờ đồng vị phóng xạ. Phage được nuôi trên vi khuẩn mọc trên
môi trường chứa các đồng vị phóng xạ P32 và S35. S35 xâm nhập vào protein
và P32 xâm nhập vào DNA của phage
4
Thí nghiệm: phage T2 nhiễm phóng xạ được tách ra và đem nhiễm
vào các vi khuẩn không nhiễm phóng xạ, chúng sẽ gắn lên mặt ngoài của tế
bào vi khuẩn. Cho phage nhiễm trong một khoảng thời gian đủ để bám vào
vách tế bào vi khuẩn và bơm chất nào đó vào tế bào vi khuẩn. Dung dịch
được lắc mạnh và ly tâm để tách rời tế bào vi khuẩn khỏi phần phage bám
bên ngoài vách tế bào. Phân tích phần trong tế bào vi khuẩn thấy chứa nhiều
P32 (70%) và rất ít S35, phần bên ngoài tế bào vi khuẩn chứa nhiều S35 và rất
ít P32. Thế hệ mới của phage chứa khoảng 30% P32 ban đầu
Thí nghiệm này đã được chứng minh trực tiếp rằng DNA của phage
T2 đã xâm nhập vào tế bào vi khuẩn và sinh sản để tạo ra thế hệ phage mới
mang tính di truyền có khả năng đến nhiễm vào các vi khuẩn khác.
Hinh 1.3 Sư xâm nhâp DNA cua virus vao vi khuân
II. Thành phần và cấu tạo hóa học của acid nucleic
DNA và RNA là những hợp chất cao phân tử. Các đơn phân là các
nucleotide.
Mỗi nucleotide gồm ba thành phần
- H3PO4
5
- Đường desoxyribose (DNA ), ribose ( RNA)
- Nitrogenous base
DNA RNA
+ Purin Adenin (A) Adenin (A)
Guanin (G) Guanin (G)
+ Pyrimidin Cytosin (C) Cytosin (C)
Timin (T) Uracin (U)
(a)
(b) (c)
Hình 1.4 Thành phần đường và base của nucleotide
(a) Base purin va pyrimidin
(b) Đương ribose va deoxyribose
(c) Sư khac nhau giưa Thymine va Uracil
Trong nucleotide, base purin sẽ gắn với C1 của đường ỏ N9. Nếu là
pyrimidin thì sẽ gắn với C1 của đường ở N3. C5 của đường gắn với nhóm
phosphate.
6
Trong mạch, 2 nucleotide nối với nhau nhờ mối liên kết giữa nhóm
3’-OH của đường với nhóm -OH của H3PO4, cùng nhau mất đi một phân tử
nước.
Nếu phân tử chỉ gồm đường và nitrogenous base gọi là nucleoside.
1. DNA
1.1. Cấu tạo hóa học của DNA
Hình 1.5 Sự bắt cặp bổ sung của các base của hai mạch đơn
Trên cơ sở các nghiên cứu của mình, Chargaff (1951) đã đưa ra kết
luận:
+ Số lượng A = T, G = C
7
+ Tỉ số A +T đặc trưng cho mỗi loài sinh vật.
G + X
Các base căn bản của acid nucleic bắt cặp bổ sung
Cũng trong thời gian này, Wilkins và Franklin (người Anh) nghiên
cứu, phân tích tán xạ bằng tia rơnghen, kết luận:
+ Các purin và pyrimidin có cấu trúc phẳng, mặt phẳng của chúng
được xếp vuông góc với trục dài của mạch polynucleotide cái này xếp
chồng lên cái kia, khoảng cách trung tâm giữa hai mặt phẳng kề nhau là
3,4Ao
+ Mạch polynucleotide xoắn thành lò xo quanh trục giữa, mỗi bước
xoắn là 34Ao (ứng với 10 nu)
+ Việc so sánh nồng độ DNA đo được với các số liệu tính toán trên
cơ sở sắp không gian của các nguyên tử cho thấy DNA có nhiều hơn một
mạch polynucleotide.
Năm 1951, J. Watson và F. Crick: tổng hợp các số liệu phân tích hóa
học và tán xạ của tia X, để xây dựng nên mô hình cấu trúc phân tử DNA.
Theo mô hình này, phân tử DNA có những đặc trưng chủ yếu trong cấu trúc
không gian như sau:
Hình 1.6. Mối liên kết hydro giữa A-T và G-C
8
1. Phân tử DNA gồm hai chuỗi polynucleotide xoắn song song
ngược chiều quanh một trục chung.
2. Các gốc base quay vào phía trong của vòng xoắn, còn các gốc
H3PO4, pentose quay ra ngoài tạo phần mặt của hình trụ. Các mặt phẳng của
phân tử đường nằm về phía phải của các base. Còn các base thì xếp trên
những mặt phẳng song song với nhau và thẳng góc với trục phân tử. Khoảng
cách giữa các cặp base là 3,4 Ao. Chúng lệch nhau một góc 360 nên cứ 10
gốc (10 nucleotide) tạo nên một vòng quay.
Hình 1.7 Chuỗi xoắn kép DNA
3. Chiều cao của mỗi vòng xoắn là 34 Ao, gồm 10 bậc thang do 10
cặp base tạo nên. Đường kính của vòng xoắn là 20 Ao.
9
4. Hai chuỗi polynucleotide gắn với nhau qua liên kết hydro được
hình thành giữa các cặp base đứng đối diện nhau theo nguyên tắc bổ sung
cặp đôi nghiêm ngặt: A luôn luôn liên kết với T bằng 2 mối liên kết hydro,
G liên kết với X bằng 3 mối liên kết hydro. Do đó trong phân tử DNA tổng
số base loại pirimidin luôn bằng tổng số các base loại purin (quy luật
Chargaff).
+ Khoảng cách giữa hai mạch polynucleotide luôn xác định, không
thay đổi. Khoảng cách này bằng kích thước của một base loại purin cộng
với kích thước của một base loại pirimidin.
+ A luôn luôn đi với T là vì giữa 2 base này chỉ có khả năng hình
thành nên hai liên kết hydrro ở các vị trí N6 - O6 và N1 - N1.
G luôn luôn đi với X vì giữa 2 base này có thể tạo ra 3 liên kết hydro ở các
vị trí N6 - O6, N1 -N1 và N2 - O2.
Vì vậy mà A chỉ liên kết với T và G chỉ liên kết với C.
5. Tính chất bổ sung giữa các cặp base dẫn đến tính chất bổ sung
giữa hai chuỗi polynucleotide của DNA. Do đó biết thành phần, trật tự sắp
xếp của các nucleotide trên chuỗi này sẽ suy ra thành phần, trật tự sắp xếp
của các nucleotide trên chuỗi kia. Đặc điểm quan trọng nhất của mô hình là
đối song song (antiparallel). Để các bazơ tương ứng đối diện nhau, hai mạch
cần phải bố trí: đầu của sợi này đối diện với đuôi của sợi kia. Mô hình
Watson-Crick ra đời từ năm 1953 và trong vòng 25 năm tiếp theo nó được
công nhận và sử dụng rộng rãi.
Mãi đến những năm 70, nhờ dùng các phân tích chính xác nhiều
dạng DNA đã được phát hiện, dạng thường gặp là dạng B theo mô hình của
Watson-Crick, đây là cấu trúc phổ biến cho hầu hết sinh vật. Mỗi dạng
DNA là một dòng họ các phân tử có kích thước dao động quanh các trị số
trung bình
Hai chỉ số được dùng để đánh giá DNA
- Chỉ số h: là chiều cao giữa hai nu kề nhau.
- Chỉ số n: số nucleotide của một vòng xoắn
Ngoài DNA dạng B, còn nhiều dạng xoắn phải khác (A, C, D ...)
chúng phân biệt với DNA dạng B về khoảng cách giữa các base cũng như
độ nghiêng của chúng so với trục và sự phân bố trên chuỗi kép.
10
Gần đây, người ta còn phát hiện ra một dạng DNA có bộ khung
zigzag và đóng xoắn theo chiều trái, gọi là DNA xoắn trái hay DNA Z, trên
mỗi vòng xoắn có tới 12 cặp base. Giải thích sự tồn tại của DNA Z có nhiều
quan niệm khác nhau: Theo Watson, chỉ trong những điều kiện đặc biệt, như
nồng độ muối cao thì các vùng chứa trình tự ...GCGCGC... chuyển sang cấu
hình Z, ngược lại ở nồng độ muối thấp chúng quay trở lại dạng B. Điều đó
chứng tỏ DNA Z có thể đóng vai trò giảm sức căng cục bộ trong phân tử
DNA siêu xoắn hoặc có thể tương tác đặc thù với các protein điều hòa. Tuy
nhiên A. Rich cho rằng DNA Z xảy ra trong tự nhiên mà bằng chứng là có
mặt trong ruồi giấm bình thường. Có thể là vùng DNA Z nằm xen kẻ với
vùng DNA B và chúng có thể xoay hình dáng thành dạng B khi xảy ra các
biến đổi hóa học nào đó làm cho DNA Z trở nên không ổn định. Rich còn
gợi ý rằng những gen nằm ở các vùng bị xoay như thế thì có thể tháo xoắn
sau đó và bắt đầu phiên mã. Nhờ vậy mà protein có thể được tổng hợp. Mặc
dù đây mới chỉ là giả thiết song khám phá này đã cung cấp một công cụ
tiềm năng cho nghiên cứu về hoạt động của các gen và DNA.Việc phát hiện
các dạng DNA cho thấy DNA trong tế bào không đơn điệu. tùy trạng thái
sinh lý mà DNA ở dạng này hoặc dạng khác.
Hình 1.8 DNA dạng xoắn kép Z
a. Mô hình dạng B của Watson-Crick, là dạng xoắn phải với trục đều
b. Mô hình dạng Z, là dạng xoắn trái với trục không đều
1.2. DNA cuộn lại trong tế bào
Hầu hết trong cơ thể sinh vật, DNA có chiều dài dài hơn rất nhiều
lần so với chiều dài của tế bào.
11
Ví dụ: phage T2 có chiều dài tế bào khoảng 0,16 µm, trong khi chiêu dài
ADN của chúng khoảng 50 µm.
Hình 1.9 Các dạng thẳng, vòng tròn và xiêu xoắn của DNA
Do đó DNA ở trong tế bào phải cuộn xoắn. Sự cuộn xoắn này rất
tinh vi vì trong quá trình tồn tại, các gen phải hoạt động, như vậy nó phải là
một chất có hoạt tính thường xuyên
Người ta thấy DNA có thể ở 3 dạng cấu trúc:
- Dạng siêu xoắn: mạch kép vặn xoắn lại thành hình số 8. Đây là
dang tự nhiên ở vi khuẩn.
12
- Dạng vòng tròn: sợi DNA căng tròn có được do DNA siêu xoắn bị
cắt đứt 1 trong hai mạch kép.
- Dạng thẳng: khi DNA bị cắt đứt cả hai mạch.
Mô hình về bộ gen của E .coli
Ở E. coli, chiều dài DNA được rút ngắn đáng kể, sự cuộn lại được
thực hiện nhờ vào các RNA nối. Khi các RNA nối bị cắt thì các DNA bung
dài ra, thuận lợi cho sự sao chép DNA. Nếu mạch DNA bị cắt, DNA được
tháo xoắn, căng ra thuận lợi cho sự tổng hợp protein.
Hình 1.10 Mô hình cấu trúc nhiễm sắc thể (bộ gen) của E. coli
(Theo Pettijohn và Hecht, 1974)
13
Hình 1.11 Sự tháo xoắn DNA trong tế bào vi khuẩn
2. RNA
Ở các sinh vật như: thực khuẩn thể, virus của động vật, virus của
thực vật... thì vật liệu di truyền là RNA. Ở các sinh vật bậc cao có RNA là
bản sao mã của DNA.
RNA có cấu tạo từ các đơn phân là các ribonucleotide. Giống với
nucleotide, mỗi ribonucleotide gồm ba thành phần: đường ribose, H3PO4,
bazơnitric (T được thay bằng U). Trong tế bào có ba loại RNA:
2.1. RNA riboxom (ribosomal RNA-rRNA)
rRNA cùng với protein cấu tạo nên ribosome. rRNA chiếm tỷ lệ cao
trong tế bào có thể đến 75% của tổng RNA. Ở các ribosome khác nhau có
các rRNA khác nhau, chúng được đặc trưng bởi hằng số lắng S:
- Eukaryote : ribosome có hệ số lắng khi ly tâm là 80S, gồm hai đơn
vị:
+ Đơn vị lớn ( 60S) có rRNA 28S; 5,8S; 5S
+ Đơn vị nhỏ (40S) có rRNA 18S
- Prokaryote và lục lạp, ty thể có hệ số lắng khi ly tâm là 70S, gồm 2
đơn vị:
+ Đơn vị lớn (50S): có loại rRNA 23S; 5S
+ Đơn vị nhỏ (30S): có rRNA 16S
14
RNA ribosom có cấu trúc bậc I (mạch thẳng) và cấu trúc bậc hai.
Trong ribosome, các rRNA tồn tại ở dạng cấu trúc bậc hai. RNA ribosom có
cấu tạo là một sợi xoắn có nhiều vùng liên kết đôi theo nguyên tắc bổ sung
A liên kết với U, G liên kết với X và có khi G liên kết với U. Trong tế bào
rRNA chiếm tỷ lệ cao có thể lên đến 75-80% tổng số RNA
Hình 1.12 rRNA cấu tạo nên ribosom
2.2. RNA vận chuyển (Transfer RNA - tRNA)
Mỗi tRNA gắn với một phân tử amino acid, mang đến ribosome để
tham gia tổng hợp protein. Mỗi tRNA đặc hiệu cho một loại amino acid. Có
hơn 20 loại tRNA khác nhau tương ứng với hơn 20 loại amino acid. Trong
thực tế, người ta thấy số lượng tRNA lớn hơn rất nhiều so với số lượng
amino acid vì một amino acid có nhiều bộ ba mã hóa. Đồng thời cùng một
bộ ba mã hóa, vẫn có thể có nhiều tRNA do hiện tượng biến đổi của các
nucleotide trong tRNA tạo nên các loại tRNA mới và trong quá trình tổng
hợp tRNA, sau khi hình thành chuỗi polynucleotide còn chịu sự tác động
của các yếu tố của môi trường nội và ngoại bào làm các nucleotide bị biến
đổi, tạo ra các tRNA mới.
Các tRNA cùng tham gia vận chuyển một acid amin là các
izoaceptor. Số lượng izoaceptor thay đổi tùy acid amin.
15
Cấu trúc bậc I của tRNA: tRNA vận chuyển có phân tử lượng nhỏ:
25.000-30.000, gồm 75-90 nucleotide, có hằng số lắng 4S. Trong thành
phần cấu trúc của tRNA có khoảng 10% các nucleotide hiếm với khoảng 30
loại khác nhau. Mọi cấu trúc của tRNA đều có 2 đầu 5' và 3' giống nhau:
đầu 5' luôn chứa G với gốc P tự do, còn đầu 3' luôn có 3 nucleotide là CCA
3'-OH. Nhóm 3'-OH của A có thể liên kết với acid amin để tạo phức hợp
tRNA-aminoacyl.
Chuỗi polynucleotide cuộn lại có những đoạn tạo mạch xoắn kép,
hình thành cấu trúc bậc hai của tRNA.
Hình 1.13 Cấu trúc của tRNA
Enzyme aminoacyl tRNA synthetase gắn amino acid với tRNA
tương ứng. Mỗi enzyme đặc hiệu cho một loại amino acid riêng biệt và xúc
tác phản ứng gắn với tRNA của nó nhờ năng lượng ATP tạo ra aminoacyl
tRNA. Phức hợp aminoacyl tRNA đến ribosome gắn với mRNA bằng nhờ
các bộ ba đối mã (anticodon) trên tRNA bắt cặp bổ sung với các bộ ba mã
hóa (codon) trên mRNA.
16
Các tRNA có một số đặc tính cấu trúc chung: chiều dài khoảng 73-
93 nucleotide, cấu trúc gồm một mach cuộn lại như hình lá chẻ ba nhờ bắt
cặp bên trong phân tử. Đầu mút 3’ có trình tự kết thúc là CCA, amino acid
luôn gắn vào đầu này. Đầu 5 chứa gốc phosphate của G.
Mỗi tRNA có có 4-5 vùng với chức năng khác nhau:
- Vòng DHU: có chứa nucleotide dihydrouridin, vùng này có chức
năng nhận biết aminoacyl tRNA synthetase
- Vòng anticodon: đọc mã trên mRNA theo nguyên tắc kết cặp
anticodon – codon.
- Vòng phụ: có thể không có ở một số RNA.
- Vòng TφC: có chứa nucleotide pseudouridin, vùng này có chức
năng nhận biết ribosom để vào đúng vị trí tiếp nhận aminoacyl tRNA (vị trí
A)
- Đấu 3’ –CCA: vị trí gắn với acid amin.
tRNA chiểm khoảng 15% tổng số RNA của tế bào
2.3. RNA thông tin (messenger RNA – mRNA)
RNA thông tin làm nhiệm vụ truyền đạt thông tin di truyền từ DNA
đến protein. mRNA chiểm khoảng 5% tổng số RNA tế bào.
Cấu trúc của mRNA:
5’ m7GxpYp AUG UAG 3’
vùng 5’ vùng vùng 3’
không mã hóa mã hóa không mã hóa
X, Y có thể là A hoặc G
DNA polymerase khởi sự phiên mã ở đoạn nằm ngay trước vùng mã
hóa được gọi là đoạn 5’ không mã hóa (5’-non coding). Do đó mRNA có
đoạn đầu mang các tín hiệu cho ribosome nhận biết để gắn vào dịch mã. Ở
đuôi 3’ sau dấu kết thúc có đoạn 3’ không mã hóa là nới gắn poly-A.
Các mRNA của prokaryote có nữa thời gian (half life) tồn tại ngắn
trung bình 2 phút. Các mRNA của Eukaryote có nữa thời gian tồn tại
khoảng 30 phút - 24 giờ.
17
Hình 1.14 mRNA ở Prokaryote
Hình 1.15 mRNA ở eukaryote
2.4. Ribozym và self- splicing
Vào 1981, phát minh về vai trò xúc tác của một số phân tử RNA đã
làm đảo lộn quan điểm về chất này.
Các phân tử rRNA của các loài nguyên sinh động vật, lúc đầu được
tổng hợp với một số lượng lớn tiền chất, từ số các rRNA này sẽ có một được
tạo ra bằng cách tự cắt nối (self - splicing). Quá trình cắt nối này có thể xảy
ra ở in vitro trong sự vắng mặt của protein. Điều đó cho thấy rằng các trình
tự intron tự nó có hoạt tính xúc tác tương tự enzyme. Phản ứng self-splicing
trong đó trình tự intron tự xúc tác quá trình tự cắt rời khỏi phân tử rRNA ở
loài Tetrahymena qua 2 bước:
+ phản ứng được bắt đầu khi nucleotide G gắn vào trình tự intron,
đồng thời cắt mạch RNA.
18
5’
Vò trí gaén Rb
Maõ khôûi ñaàu AUG
Vuøng khoâng maõ hoùa
3’
P1
UAA maõ keát thuùc
P2
UAA maõ keát thuùc
P3
UAA maõ keát thuùc
Maõ khôûi ñaàu AUG Maõ khôûi ñaàu AUG
Vò trí gaén Rb Vò trí gaén Rb
P P PG
5’
5’ CAP
Vò trí gaén Rb
Vuøng khoâng maõ
hoùa
AUG
Maõ keát thuùc
UAA
Vuøng khoâng maõ
hoùa
A-A-A--3’
+ Đầu 3’ của RNA mới vừa được tạo ra gắn vào đầu bên kia của
intron hoàn thành phản ứng nối liền
Hình 1.16 Hoạt động cắt intron và nối exon trên mRNA
Trình tự intron dài 400 nucleotide đã được tổng hợp trong ống
nghiệm và nó cuộn lại tạo phức hợp bề mặt có hoạt tính tương tự enzyme
trong các phản ứng với các RNA khác. Mặc dù splicing phần lớn không
được thực hiện tự động như ở Tetrahymena nhưng hiện tượng này cũng
được phát hiện ở những sinh vật khác, cả ở nấm và vi khuẩn.
Các RNA có khả năng tự xúc tác được gọi là ribozyme. Phát hiện
này có ý nghĩa quan trọng trong việc tìm hiểu cơ chế và nguồn gốc sự sống.
19
Hình 1.17 Phản ứng self-splicing của RNA
III Các tính chất của DNA
1. Biến tính (denaturation) và hồi tính (renaturation)
Hai mạch đơn của phân tử AND gắn với nhau nhờ các liên kết
hydro.Khi đun nóng DNA từ từ, vượt quá nhiệt độ sinh lý (khoảng 80-
95oC), các liên kết hydro giữa 2 mạch bị đứt và chúng tách rời nhau. Trước
tiên các mối liên kết A-T, khi nhiệt độ > 90oC các liên kết G -C bị đứt. Đó là
hiện tượng biến tính của DNA.
Nhiệt độ mà ở đó 2 mạch DNA tách rời nhau được gọi là điểm chảy
melting poin) của DNA: Tm. Nhiệt độ này đặc trưng cho mỗi loại DNA, phụ
20
thuộc vào số lượng các liên kết hydro. DNA có tỷ lệ G-C cao sẽ có điểm
chảy cao. DNA có 60% G-C thì điểm chảy là 95oC.
Hình 1.18 Sự biến tính và hồi tính của DNA
Ngoài nhiệt độ, người ta còn dùng chất formanide (NH2 -CH = 0)
làm biến chất DNA ở 40oC
Các DNA bị biến chất được hạ nhiệt độ từ từ, ở 60o -700C các
nucleotide sẽ gắn lại với nhau để tạo nên DNA mạch kép. Hiện tượng này
gọi là hồi tính.
21
Có thể biết được DNA bị biến tính hoặc chưa nhờ vào sự gia tăng
hấp thụ tia cực tím khi bị biến tính và sự giảm hấp thu tia cực tím khi hồi
tính. Giá trị mật độ quang tăng lên khi phân tử mạch đôi chuyển thành
mạch đơn, điều này xảy ra do “hiệu ứng siêu sắc” (hyperchromic effect),
hoặc dựa vào sự thay đổi độ lắng tụ trong ống nghiệm khi ly tâm.
2. Lai acid nucleic
Sử dụng đặc tính biến tính rồi hồi tính có thể tiến hành lai DNA với
DNA, DNA với RNA, RNA với RNA.
Nguyên tắc: lấy DNA A làm biến tính thành mạch đơn, trộn với
DNA B cũng bị biến tính thành mạch đơn. Dung dịch được hạ nhiệt độ từ từ
để xảy ra hồi tính. Đây là kiểu lai lỏng hay lai trong dung dịch. Quá trình
hồi tính xảy ra, sợi A kết với A, B kết với B, đồng thời có sợi A kết với B
tạo thành phân tử lai. Muốn lai được với nhau, giữa 2 loại DNA phải có
những đoạn có trình tự bổ sung nhau. Có thể dùng đồng vị phóng xạ đánh
dấu để phát hiện đoạn lai.
Hiện nay còn sử dụng phương pháp lai trên pha rắn, được sử dụng
rộng nhất:
+ Phương pháp Southern blot, dùng cho DNA
+ Phương pháp Northern blot dùng cho RNA
+ Phương pháp dot (điểm) và slot (khe) blot dùng cho RNA và DNA
- Lai tại chỗ (in situ hybridization) là kiểu lai phân tử trong đó trình
tự acid nucleic cần tìm (trình tự đích) nằm ngay trong tế bào hay trong mô.
Lai tai chỗ cho phép nghiên cứu NST, khuẩn lạc hay mô tế bào mà không
cần tách chiết chúng.
Dùng phương pháp lai DNA:
+ Có thể xác định mối quan hệ họ hàng giữa các loài. DNA người và
DNA chuột chỉ lai được 25%.
+ Có thể tiến hành lai mRNA với DNA để xác định vị trí gen trên
DNA tạo ra mRNA tương ứng.
Phương pháp lai acid nucleic giúp hiểu chi tiết hơn về bộ gen, nó là
cơ sở của phương pháp chẩn đoán mới dùng acid nucleic đang đuợc sử dụng
rộng rãi.
22
Hình 1.19 Phát hiện các DNA lai với mẫu dò
IV. Những cấu trúc chứa DNA trong tế bào
1. Những đoạn DNA chứa thông tin di truyền
Đại phân tử DNA là do polynucleotide tạo thành, được chia làm
nhiều đoạn. Mỗi đoạn là một đơn vị chức năng, gọi là gen
Gen được định nghĩa trong di truyền học:
+ Mendel là người đầu tiên nêu lên khái niệm “nhân tố di truyền”
+ J. Morgan cụ thể hóa khái niệm về gen: gen nằm trên nhiễm sắc
thể chiếm một locus nhất định. Gen là đơn vị chức năng xác định một tính
trạng.
+ Sau khi học thuyết trung tâm ra đời: gen là đoạn DNA trên nhiễm
sắc thể không những mã hóa cho các loại protein mà cả các loại RNA.
+ Cuối những năm 70, sau khi phát hiện ra gen gián đoạn: gen là một
đoạn DNA đảm bảo cho việc tạo ra một polypeptid nó bao gồm cả vùng trước
và sau vùng mã hóa cho protein và cả những đoạn không mã hóa xen giữa các
đoạn mã hóa.
Hiện nay có thể định nghiã tổng quát như sau: gen là đơn vị chức
năng cơ sở của bộ máy di truyền chiếm một locus nhất định trên NST và xác
định một tính trạng nhất định. Các gen là những đoạn vật chất di truyền mã
hóa cho những sản phẩm riêng lẻ như các RNA được sử dụng trực tiếp cho
23
tổng hợp các enzym, các protein cấu trúc hay các mạch polypeptid để gắn
lại tạo ra các protein có hoạt tính sinh học.
Toàn bộ những gen khác nhau của cơ thể, gọi là Idiotype. Ở
Eukaryote nó bao gồm các gen trên nhiễm sắc thể (chromotype) và các gen
ngoài nhân (plasmotype). Ở prokaryote, nó bao gồm bộ gen và plasmid.
2. Virus chứa DNA và virus chứa RNA
Virus gây bệnh đốm thuốc lá (mosaic tobacco virus - MTV) là virus
chứa RNA sợi đơn. Nó là một hạt hình que dài 300 nm, có đường kính 18
nm. Bên ngoài có một vỏ chứa 2130 phân tử và một vòng xoắn RNA ở bên
trong. Chiều cao vòng xoắn: 23Ao, khối lượng phân tử = 2.106 đvC.
Hình 1.20 Virus khảm thuốc lá
a. Ảnh virus khảm thuốc lá chụp bằng
kính hiển vi điện tử ở
độ phóng đại 37.428X
b. RNA điều khiển sự hình thành
tính trạng vỏ của virus
Một số virus chứa DNA sợi đôi như các thực khuẩn thể T2, T4, T6
chứa DNA mạch đôi thẳng, dài. Có chứa 2.105 đôi nucleotide, khối lượng
24
phân tử: 130.10 đvC. Khi lực thẩm thấu của môi trường thay đổi đột ngột,
phân tử DNA này thoát ra khỏi vỏ protein, người ta chụp ảnh được ảnh
DNA của tjực khuẩn thể T2 với chiều dài 0,05 mm (50µm), phân tử này xếp
gọn ở phần đầu của thực khuẩn thể. Tất cả thực khuẩn thể T số chẵn chứa
DNA với mạch polynucleotide giống nhau, nên khi trộn lẫn các DNA mạch
đơn đã bị biến tính của chúng với nhau thì các mạch đơn này có thể tạo
thành phân tử lai. Phân tử DNA của T3, T7 không thể hình thành phân tử
DNA lai với DNA của T số chẵn. Còn virus ΦX174 có chứa DNA sợi đơn
gồm 5400 nucleotide với khoảng 9 gen.
3. Nhiễm sắc thể chính và plasmid của vi khuẩn
DNA của vi khuẩn làm thành thể nhân, tiếp xúc trực tiếp với tế bào
chất, không có màng nhân làm giới hạn. DNA của thể nhân là DNA mạch
vòng, xoắn kép
Ví dụ: DNA E.coli có đường kính 350 µm, gồm 4.106 đôi nucleotide và
chứa khoảng 500 gen
Các file đính kèm theo tài liệu này:
- c1 - ban chat cua vat chat di truyen.pdf
- mucluc.pdf