Gắn lên vật thể một hệ trục toạ độ vuông góc OXYZ sao cho mỗi trục đo là một chiều kích thước của vật thể.
Trong không gian ta lấy một mặt phẳng P’ và một phương chiếu l.
Chiếu vật thể cùng hệ trục toạ độ lên mặt phẳng P’ theo phương chiếu l
Ta được hình chiếu của vật thể và hệ tọa độ O’X’Y’Z’
19 trang |
Chia sẻ: luyenbuizn | Lượt xem: 1747 | Lượt tải: 1
Nội dung tài liệu Bài 5: Hình chiếu trục đo, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
HÌNH CHIẾU TRỤC ĐO Giả sử ta có một vật thể Gắn lên vật thể một hệ trục toạ độ vuông góc OXYZ sao cho mỗi trục đo là một chiều kích thước của vật thể. Trong không gian ta lấy một mặt phẳng P’ và một phương chiếu l. Chiếu vật thể cùng hệ trục toạ độ lên mặt phẳng P’ theo phương chiếu l Ta được hình chiếu của vật thể và hệ tọa độ O’X’Y’Z’ Hình chiếu trục đo được xây dựng như sau: I. KHÁI NIỆM Hình chiếu trục đo là gì?HCTĐ là hình biểu diễn ba chiều của vật thể được xây dựng bằng phép chiếu song song. I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc cân I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều 2. Có các thông số cơ bản nào? Có 2 thông số là góc trục đo và hệ số biến dạng a. Góc trục đo X’O’Y’ Gồm 3 góc: Y’O’Z’ X’O’Z’ I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Là tỉ số độ dài hình chiếu của một đoạn thẳng nằm trên trục toạ độ với độ dài thực của đoạn thẳng đó. Gồm: : hệ số biến dạng theo trục O'X' (chiều dài) : hệ số biến dạng theo trục O'Y' (chiều rộng) : hệ số biến dạng theo trục O'Z' (chiều cao) b. Hệ số biến dạng I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều X’ Y’ Z’ O’ X’O’Y’ X’O’Z’ Y’O’Z’ Các góc trục đo II. Các loại hình chiếu trục đo Có 2 loại hình chiếu trục đo: HCTĐ vuông góc đều HCTĐ xiên góc cân I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều 1. HCTĐ vuông góc đều Đặc điểm phương chiếu Phương chiếu l vuông góc với mp chiếu Hệ số biến dạng p = q = r = 1 Góc trục đo O’ 1200 1200 1200 X’ Y’ Z’ I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều X’O’Y’ = Y’O’Z’ = X’O’Z’ =120° Hình chiếu trục đo của hình tròn HCTĐ vuông góc đều của những hình tròn nằm trong các mặt phẳng song song với các mặt phẳng toạ độ là các hình Elip có hướng khác nhau. Hình tròn: đường kính d elip + Độ dài trục lớn : 1,22d + Độ dài trục bé : 0,71d 1.22d 0.71d d x y o Z’ O’ X’ Y’ HCTĐ vuông góc đều của miếng nệm d 2. HCTĐ xiên góc cân Đặc điểm phương chiếuPhương chiếu l không vuông góc với mp chiếu Hệ số biến dạngp = r = 1 và q = 0,5 Hình chiếu của hình trònVòng tròn trên các mặt vật thể khi vẽ là hình elip, trừ mp (XOZ) là hình tròn I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Góc trục đoX’O’Z’ = 90°, X’O’Y’=Y’O’Z’=135° O’ X’ Y’ Z’ 135° 135° 90° O’ X’ Y’ Z’ 135° 135° 90° Hình chiếu trục đo xiên góc cân của tấm nệm I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều III. Cách vẽ hình chiếu trục đo Chọn cách vẽ phù hợp với hình dạng vật thể. Đặt các trục toạ độ theo các chiều dài, rộng, cao của vật thể. X’ Y’ Z’ a b c e d f I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 1: Chọn mặt phẳng O’X’Z’ làm mặt phẳng cơ sở thứ nhất để vẽ một mặt của vật thể theo các kích thước đã cho X’ Z’ Y’ c d e f a O’ Cách vẽ HCTĐ xiên góc cân I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 2: Dựng mặt phẳng cơ sở thứ hai O1X1Z1 song song và cách mặt thứ nhất một khoảng bằng để vẽ mặt còn lại của vật thể. X’ Y’ Z’ O’ Z1 b/2 O1 X1 c d e f a Cách vẽ HCTĐ xiên góc cân I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 3: Nối các đỉnh còn lại của hai mặt vật thể và xoá các đường thừa, đường khuất ta thu được hình chiếu trục đo của vật thể. X’ Z’ O’ Y’ Cách vẽ HCTĐ xiên góc cân I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 1: Chọn mặt phẳng O’X’Z’ làm mặt phẳng cơ sở thứ nhất để vẽ một mặt của vật thể theo các kích thước đã cho d e f a X’ Z’ O’ c Y’ Cách vẽ HCTĐ vuông góc đều I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 2: Dựng mặt phẳng cơ sở thứ hai O1X1Z1 song song và cách mặt thứ nhất một khoảng bằng b để vẽ mặt còn lại của vật thể. Y’ O’ X1 X’ Z’ Z1 O1 b d e f a c Cách vẽ HCTĐ vuông góc đều I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bước 3: Nối các đỉnh còn lại của hai mặt vật thể và xoá các đường thừa, đường khuất ta thu được hình chiếu trục đo của vật thể. Y’ X’ Z’ O’ Cách vẽ HCTĐ vuông góc đều I. Khái niệm 1. Hình chiếu trục đo là gì? 2. Có các thông số cơ bản nào? II. Các loại HCTĐ 1. HCTĐ vuông góc đều 2. HCTĐ xiên góc cân III. Cách vẽ HCTĐ 1. HCTĐ xiên góc cân 2. HCTĐ vuông góc đều Bài tập Vẽ HCTĐ vuông góc đều của một hình nón cụt : + Đường kính đáy lớn :40 mm + Đường kính đáy nhỏ :30 mm + Chiều cao : 50 mm Bài 1 X’ Y’ Z’ O’ Y’1 X1 O1 30 mm 40 mm 50 mm Nhóm 4 Trâm Anh Kim Khánh Tấn Phát Phương Thảo
Các file đính kèm theo tài liệu này:
- bai_5_hinh_chieu_truc_do.ppt